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1 Introduction

A lattice path is in all generality a directed polygonal line in the discrete Cartesian plane
Z x Z. Usually, from each point, there is a finite set of movements we are allowed to take.
Often we will also make assumptions on the region which the walk is not allowed to leave.
In our setting, this will be mostly the quarter plane.

Lattice walks appear in many fields of mathematics and computer science. They are a
classical topic in combinatorics. Many combinatorical objects (for example trees, permu-
tations, maps, Young tableaux, ...) can be encoded by a lattice walk and because of that
lattice walks enumeration has many applications.

There is also a close relation between lattice walks and formal languages. A famous exam-
ple are correctly nested strings of opening and closing parentheses. We require to have the
same number of opening and closing parentheses and that in each substring the number
of opening parentheses is not less than the number of closing parentheses (this condi-
tion ensures that there no closing parenthesis appears before its corresponding opening
parenthesis appeared). We can encode opening parentheses with a NE-step and a closing
parenthesis with a SE-step. Hence, correctly nested strings of paretheses correspond to
walks with step set {NE, SE} that start in (0,0), end on the z-axis and never cross the
xz-axis. This type of lattice paths is called Dyck-paths (named after the German mathe-
matician Walther von Dyck). Dyck-paths also appear in many other settings, for example,
binary trees can be encoded as Dyck-paths as well.

Also in probability theory and statistics lattice paths will appear. Lattice paths describe
the evolution of sums of independent discrete random variables, for example the gain in
coin-tossing games. In queueing models and birth-death-processes lattice paths find their
applications, too. Also, Brownian motions can be described by lattice walks.

In the following, we will focus mostly on the algebraic properties of the generating function
assigned to a lattice walk in the quarter plane. We will see that this generating function is
always algebraic for walks in the entire plane or walks in the half-plane, while generating
functions of walks in the quarter plane tend to have a more complicated behaviour.

In recent years the generating functions of lattice walks with small steps in the quar-
ter plane have been completely classified. In this master thesis I am going to give a
summary of this classification.

In the next chapter I will introduce some basic notations and concepts. The third chapter
will be devoted to classifiying lattice walks with small steps in the quarter plane. We will
encounter a correspondence between walks and groups that turns out to be very helpful for
this classification. There are 79 non-equivalent, non-simple walks, among them 23 with a
finite group and 56 with an infinite group. It turns out that those with a finite group have
a D-finite or even algebraic generating function, whereas the ones with an infinite group
have a generating function that is not D-finite. The fourth chapter is all about Gessel
walks. They are the only model where the previous techniques turned out to be fruitless.
We will see three proofs for the fact that the generating function of Gessel walks is alge-
braic, which are very different in their nature. The fifth chapter is a tabularly overview,
whereas in the sixth chapter we are going to discuss some new approaches and techniques
that may turn out to be useful for proving algebraicity or D-finiteness results of generating
functions. The seventh and last chapter will be some kind of excursion to generalizations.
After the classification of lattice paths in the quarter plane has been completed there are
already some efforts made to generalize there results to three-dimensional walks in the
octant, but the sheer number of walks makes this task rather difficult. I will also briefly



discuss other regions of interest, for example walks under a diagonal or walks in a stripe.



2 Preliminaries

There are many equivalent ways to write down a step. Instead of writing the direction of
a step we will usually write its coordinates or use x’s and y’s to describe it. For example
we write (1, —1) or z7 for a SE step. Here and in the following 7 stands for 1

For a walk with fixed step set S we denote the number of walks that end in the point (i, 7)
after n steps with f(i,j,n). The expression

F(x,y,t) Z ziyIt"

%,j,n>0

denotes the generating function of this walk.

We use bold letters or numbers to denote vectors in RY, for example x = (xy, ... )
or 0 = (0,...,0). Similarly we will use this multi-index-notation to denote order rela-
tions u < v if u; < v; for all ¢ = 1,...,d, monomials x® := z{'...2¢, scalar products
u-v =ujvi + -+ + uqvg or other concepts.

Definition 2.1. We call a power series f(x) € K[[x]]

e rational, if it can be written as the quotient of two polynomials, i.e. there are
P(x),Q(x) € K[x], Q(x) # 0 with f(x) = 523
o algebraic, if it fulfills a nontrivial polynomial equation, i.e. there is a polynomial

P(z1,...,2q,24+1) € K[z1,...,24,2441], P # 0 such that P(x1,...,xq, f(x)) = 0.
A power series that is not algebraic is called transcendental.

o D-finite, if for all i < d the series [ satisfies a nontrivial linear differential equation
in x; with coefficients in K[zy,...,x4]. Said differently, the K(z1,...,xq)- vector
space spanned by the partial derivatives Of /0x1,...,0f/0xq is finite dimensional.
Series that are not D-finite are called hypertranscendental.

It is clear that each rational function is algebraic and each algebraic function is D-finite.

2.1 Walks in the plane

Walks with step set S C {N, NE, E, SE, S, SW, W, NW} in the entire plane are an easy
case to consider. Their generation function is always rational.

Proof: Let f(i,7,n) be the number of walks starting in (0,0) and ending in (i, j) after n
steps. We have the recursion

Fi,4,n) =Y capfli+o,j+B8,n—1)
a,B

for all n > 0 and the initial conditions f(i,7,0) = 0 for (¢,5) # (0,0) and f(0,0,0) = 1.
The parameters o and 8 are in {—1,0, 1} and the constants ¢, g are integers and depend

on the step set. Multiplying with z’y? 2" and summation over all values of i, j and n gives
us

Fla,y,2)= Y flay2)ay/2"= Y Y capfli+aj+pn—1alyz".

1,5,n20 ,4,n2>0 o,



We can rewrite the right hand side as

Z caﬂx_o‘y_ﬁz Z 'yl 2" + P(x,y, 2)
a,B ,j,n=>0

where P is a polynomial in z, y and z which occurs because of some corrections made such
that all sums start at (0,0,0). We can rewrite the above equation as

F(z,y,2)(zy — R(z,y, 2)) = 2yP(z,y, 2)

where
R(z,y,2) =2y Y capr "y "z
a7/8
is also a polynomial in x,y and z. Hence, our generating function is rational. O

Remark: The same holds for walks with other integer step sets or in higher dimensions
for walks in the entire hypercubic lattice Z¢. Since we have no restriction on the region in
which the walk should lie in, walks in the entire plane are a rather easy thing to consider.
The situation will become more delicate if we restrict the walks to the half-plane (which
always have a algebraic generating function) or to the quarter plane where the two con-
straints on the walk will give rise to more difficult and interesting problems. For walks in
the quarter plane the generating function will show a more complicated behavior. There
are step sets for which the generation function will not be algebraic, there are even step
sets where it is not even D-finite (for example, quarter plane walks with step set {NE,
NW, SE} have a non-D-finite generating function, see [26]).

2.2 Recurrences with constant coefficients

We are going to study a d-dimensional sequence (fn)pene in the field K which is defined
by the linear recurrence

o o(n) for n € N¢ \ (s + Nd) (2.1)
" Y tem CtSantt forn € s + N¢ e
The set H C Z% is a finite set of shifts that occur in the recurrence and s € N¢ is the
starting point of the recurrence. We require s + H C N¢ for this recurrence to be well
defined. The values of f in the shifted quadrant s+N¢ can be computed via the recurrence
relation, while all other values need to be given by the initial conditions denoted by the
function ¢ : N\ (s +N9) — K. In the following we are going to assume that the coefficients
¢t are constants lying in K.
To make sure that this way of defining a sequence gives us a unique solution we will need
to pose a few further conditions which we are going to see in the following theorem

Definition 2.2. A vector w € R? with Q-linearly independent components is called a
weight vector. It induces a total order <y on Z% via a <w b if w-a < w-b. This order
can be generalized to the sets of monomials x* € K[[x]] in the following sense: x* <y, xP
ifw-a<w-b.

Theorem 2.3. If there exists a weight vector w € R% with positive components and
w -t < 0 for all shifts t € H, then there exists a unique solution for the recurrence (2.1).

For the proof we will need a few lemmas and definitions.



Definition 2.4. For H C Z¢ and p,q € N? define p <y q < p € q+ h C N? for some
h € H. The transitive closure <E of <m in N¢ is the dependency relation corresponding
to H.

Lemma 2.5. Let p,q,u,v be vectors in N%. Then p -<Z q and u -<;} v implies that
p+u <}; q+ V.

Proof. Clearly <y is invariant under translation: if p <y q, then also p +r <y q + r.
Hence <E is invariant under translation, too, and we have p <: q=p+u <; q-+uand
u —<JI§ v=q+u —<E q + v. Since —<JI§ is transitive it follows that p + u —<JI§ q+v. O

Lemma 2.6. Let H C Z¢ be a finite set and let -<}} be the corresponding dependency
relation. If there exists a vector v.€ N%, v > 0 such that v-h < 0 for allh € H then the
dependency relation —<E can be extended to an ordering of N® of order type w.

Note: If an order(X, <x) is of order type w it is order isomorphic to (N, <), the set of
natural numbers with the canonical ordering, i.e. there exists a f : X — N bijective such
that * <x y = f(z) < f(y) and m <n = f~1(m) <x f~(n).

Proof. Let v € N, v > 0 be such that v-h < 0 for all h € H and let <7, be any linear
ordering of N¢ (for example the lexicographic ordering). Now define a new linear ordering
<L of N¢ by

p<r,qev-p<v-qor(v-p=v-qandp<zq).

The equation v - x = k has only finitely many solutions z € N¢ for k € N arbitrary, since
this equation implies 0 < x; < v% for all ¢, which only has finitely many solutions z; € N.
Therefore <y, is an order of order type w and since p <J}} q implies v - p < v - q the
dependence relation <}, can be embedded into <, . O

Remark: To be precisely, the two properties of the previous lemma are also equivalent.
There are even some further conditions being equivalent to these two, see for example [14]

Proof of the Theorem. Write H = {hy, ..., hi}. From the previous lemma we know that
there exists a well ordering <y fulfilling the dependency relation <}}. Let p: N — N? be
a bijection with the property i < j < p; <g p; (2.2).
The sequence (ay,) fulfills the recurrence and its initial conditions if and only if there exists
a function f: N — K defined by f(i) = ap, fulfills
(iy= 20 p l(pithi) fop i (pi+hy),....fop i(pi+hy)  forp;>s (2.3)
¢(pi) for p; 2 s

where ® is given by an = ®(an+h;s Gnthgs - - - Gnthy)-
We are going to show by induction on ¢ that (2.3) defines a unique series f(i). The unique
solution of(2.1) can then be determined by a, = f o p~!(n).

Step 0: We will show that equation (2.3) determines f(0) by showing py # s (in this
case f(0) is given by o(po). If pg > s then pg + H C N? (since s + H C N¢ by assump-
tion). Said differently, po + h; <y po and therefore pg + h; <z po for 1 < j < k. But
since H is nonempty and 0 ¢ H this gives us a contradiction to property (2.2). Hence
po 7 s and equation (2.3) determines f(0) = ¢(po) uniquely.



Step i (¢ > 0): Suppose that f(0),...,f(i — 1) are determined uniquely by (2.3). If
p; 7 s then we have that f(i) = ¢(p;). Otherwise p; +h; <z p; holds for all 1 < j <k
and hence p; +h; <y p;. Then p (pi + h;) < i holds according to (2.2), i.e. the values
of fop~!(p;+h;) are already known and f (i) is determined uniquely by the first equation
of (2.3). O

At first glance the condition of the theorem might seem rather restrictive, but in fact
it is not restrictive at all. Let G be a finite nonempty subset of Z? and consider the linear

relation
Z bgan+g
geG

where b, € K are nonzero constants. For any g € G we can rewrite this as

bg/
n = — Z 3, (nte—g = Chln+h
g’eG\{g} © he Hg

where He ={g' —g:g8' € G\ {g}} and ¢y, = —%’. Hence we have |G| ways of rewriting
the recurrence. The following proposition implies that there is always at least one way
of rewriting the recurrence such that the condition of the theorem is fulfilled and we can
compute a, starting from suitable initial conditions.

Proposition 2.7. Let G C Z% a finite nonempty set. Then there exists an element g € G
such that for Hy :== {g' — g : g € G,g # g} eaists a vector v.€ N v > 0 such that
v-h <0 for allh € Hg.

Proof. Let g be the largest element in G with respect to the lexicographic ordering of Z?.
Then for all g’ # g there exists an i € {1,...,d} such that g} = g; for all j < i and g; < g;.
Define M to be

M := max L — g,
1§j§d,g'eG|gj 9i

and let v be the vector ((14+ M)4,..., (14 M)2,(1+ M)). Consider now g’ # g. Because
of gé. =g, for all j < i and ¢} < g; we get the following estimate

d

d
V(g —g) =) vilgj—g) <—vi+ M Y vj=—(1+M)<0,
=i j=it1

O

Remark: There can be more than one fitting choices of g. Consider for example the
recurrence

Amn = Omn+1 + Gmtln.
Here the set H = {(1,0),(0,1)} does not satisfy the condition of the theorem. But both
equivalent formulations

Ummn = Gmn—1 — Am+1,n—1
and

Ummn = Om—1,n — Am—1,n+1



satisfy the condition. Note that we need s > (0, 1) in the former case and s > (1,0) in the
latter. That means that we need different sets of initial values for these two recurrences:
(@m,0)m>0 for the former and (ag)n>o for the latter.

Definition 2.8. The apex of the recurrence (2.1) is defined to be the vector p = (p1,...,pd) €
Z% with p; = max{t; : t € H U {0}}.

Example: Let us consider the shift set H = {(—2,0),(0,—1),(—1,1)}. A recurrence
with this step set has starting point s = (2,1) and the apex of H is p = (0,1). We can
find a weight vector that fulfills the condition of the theorem, for example we can take
w = (v/2,1). Since all shift vectors t € H lie below the line perpendicular to w passing
through s, the condition w -t < 0 for all t € H is fulfilled.

We can transform our recurrence relation

fo = ¢(n) for n € N7\ (s + N9)
. > ten Ctfott for n € s + N¢ ’

into a functional equation satisfied by the generating function Fg(x). Multiplying the
recurrence by x" 7% and summing over all n > s gives us

FS(X) - Z h Z anJrhxn*S = Z Chxih Z aanis

heH n>s heH n>s+h
= > onx P(Fa(x) + Pu(x) — Mu(x)) (24)
heH
where
Py(x) = Z anx" % = Z p(n)x"°
n?sn>s+h n¥sn>s+h
and

n>s,n¥s+h

We can easily compute the entire generating function F(x) from Fg(x) because of the
following relation between those series:

F(x) =D anx™ =3 | 3 anx™+ 3 anx™® | =x(Fu(x) + Ps(x)).

n>0 n>s n#?sn>0

Rewrite now (2.4) as

<1 -y chxh> Fo(x) = Y enx "(Pn(x) — Mn(x)).

hcH heH
To get rid of the denominators the notion of the apex p comes in handy. Multiplying the
above equation with xP gives us

QF(x) = K(x) - Ulx)  (2.5)

where

Q(x) =xP — Z cpxP R

heH



K(x) = Z enxP PP, (x)
heH

U(x) = Z enxP My (x)
heH

and the series P, and My, are given by their definition above.

The definition of the apex implies that Q(x) is a polynomial in x, called the characteristic
polynomial or the kernel of the recurrence. The coefficients of Q(x) and K (x) are given
directly via the coefficients of the recursion or the initial conditions respectively. The coef-
ficients of U(x), however, can be computed via the recurrence (2.1) but are not explicitly
known. Because of this, K (x) is called the known initial function while U(x) is called the
unknown nitial function.

The functional equation (2.5) is equivalent to our recurrence and hence defines ay, for all
n > s and therefore also Fg(x) completely. At first glance there seem to be not only
one, but two unknown functions, Fs(x) and U(x). But if U(x) is known, F5(x) can be
computed via

The rationality, algebraicity or D-finiteness of Fy is closely intertwined with the properties
of K and U. We will exactify this in the next few theorems but first we need to introduce
the definition of the section of a power series.

Definition 2.9. Let F(z1,...,1q) = ano an,...ny X" be a formal power series in d vari-
ables. A section of F is a formal power series obtained by fixing some of the indices in
the coefficients of F'.

For example the series
na nq
E 265,05 - Ty
n2,...,ng >0

or

n3 nd—1
E : a1,1,n3,...;,nqg_1,103" - - - Ly
n3,...,ng—1>0

are sections of F'. The series F itself and also coefficients of I’ like a5 ..o are considered
to be sections as well.

The terminology of sections of formal power series was introduced by Lipshitz. It is not
difficult to prove that all sections of rational power series are again rational, and similarly
for algebraic or D-finite series.

Proposition 2.10. Let F5(x) be the genmerating function of the unique solution of the
recurrence (2.1). Then Fy is rational (respectively algebraic or D-finite) if and only if both
its known and unknown initial function K(x) and U(x) are rational (respectively algebraic
or D-finite).

Proof. Assume that K (z) and U(z) are rational. Then the relation



implies that F5(x) is rational, since Q(x) is known to be a polynomial. The same holds for
algebraic and D-finite series since the families of algebraic and D-finite series are closed
under sums, products and the division by polynomials as well.

Conversely, we have that for any h € H the series My, defined as above by

My(x) = Z anx"®

n>s.n¥s+h

are sections of Fy and hence rational since we assumed Fy to be rational. The series

Ux) =Y cnxP " My(x)
heH

is a finite linear combination of series M}, and therefore also rational. Finally, the relation
K(x) = Fs(x)Q(x) + U(x) implies that K(x) is rational, too. The same argument works
for algebraic respectively D-finite series as well. O

Remark: The known initial function K (x) can be expressed as a linear combination of
sections of the full generating function F(x) but unlike the series U(x) it can not be ex-
pressed as a linear combination of sections of Fg(x).

If we know certain properties of the apex of the step set, we can get even more results.

Theorem 2.11. Assume that the step set H has apex p = 0. Then the generating function
of the unique solution Fy(x) is rational if and only if the known initial function K(x) is
rational.

Proof. If the apex is zero it follows that h < 0 for all h € H. Hence s+h > s and My = 0.
Therefore U(x) = 0 which gives us

Since Q(x) is a polynomial we get that F5(x) is rational if and only if K (x) is rational. [

We also get a similar result for algebraic functions.

Theorem 2.12. Let K = C and suppose that the apex of H has at most one positive
coordinate. Then the generating function Fs(x) of the unique solution of the recurrence is
algebraic if and only if the known initial function K(x) is algebraic.

The proof of this theorem works with the so called kernel method, a method that is used
in various other settings. The main idea of the kernel method is to express one variable
in a recurrence as a power series of other variables. Before we are going to prove this, we
will consider an example that illustrates the main idea of the proof.

Example (Dyck paths): Consider walks with step set S = {(1,1), (1,—1)} that start in

the origin and do not touch the horizontal axis again once they have left the origin. For
this walks we get the recursion

m—1,n-1 1 Gm—1n+1 for m,n > 1
Amn = .
O(m,n),(0,0) for m =0 or n =0

10



The starting point is s = (1,1) and the set of shifts is H = {(—1,—1),(—1,1)} and has
apex p = (0,1). We want to consider

Fs(x) = Z Zan+hx“_s = Z Z an+h$m_1yn_1.

heH n>s heH n>(1,1)

We have that

Qr,y) =xP = ) epxP P =y -2 -2’y
heH
Using P _1)(7,y) = 1y~ and P_1,1y(%,y) = 0 respectively M(_; _yy(z,y) = 0 and

M1 y(z,y) =350 am12™ 1 to compute K (z,y) or respectively U(z,y) we get
K(x) = Z nxP PP (x) =2y 2y 0=y
heH

and

Ux) = Z enxP BMy(x) = Z Amar™ 0 = Z amaz™.

heH m>0 m>0

Note that U(x,y) only depends on z, hence we will write U(x) for it. The relation

K(x)—U(x)
Qx)

we derived in the previous section becomes here
(y — 2 — a2y’ Fs(z,y) =y - U(z). (26

Let now £(x) be the formal power series in x defined by Q(z,&(x)) = 0, i.e. defined by
the equation

Fs(x) =

{(x) -z —x(x)* = 0.

Solving this equation gives us

1+ V1 — 422

12(x) = 97

Considering these expressions at x = 0 we can exclude the solution with plus, hence

1—+1— 4x?

o) = —o

Inserting &(x) instead of y in (2.6) we get

0 Fs(z,y) = &(x) = Ul(x)

and hence

This gives us that

1—+1—422 1
Fs: Yy— 'y

2z

which is an algebraic power series in x and y.

11



Proof of the theorem. If Fy is algebraic, then also k is algebraic because of the previ-
ous proposition.

The other direction is a bit more difficult. If p = 0 the proof works similarly to the proof
of the previous theorem on rational series. Assume now that p has exactly one positive
coordinate. Without loss of generality we can assume that py = --- = pg_1 = 0 and
pg > 0. Then

U(x) = Z cpxP Z apx"®

heH n>s,n¥s+h

sq+hag—1
= Z cpxP P Z anx" 5.
heH hy>0 ng=3d (N1,...,nd—1)>(S1,.-,Sd—1)

From this we see that U(x) is a polynomial in x4 of degree less or equal p; — 1. The
functional equation of the recurrence then becomes

where
Qx) = :csd — Z cpxP R
heH
is a polynomial with degree in x4 greater or equal p;. We want to show that Q(x)
(considered as a polynomial in z4) has at least pg roots &;(z1,...,24—1) (counted with

multiplicities) such that
£(0,...,0)=0 (2.7).

If the above statement is true we can substitute x4 with & (z1,...,24—1) in the functional
equation and obtailn, if &; is a root of @ with multiplicity m, that
U)=K(E&) U'E) =K ... Um Vg =Km"(E)

where all derivatives are with respect to z4. Condition (2.7) ensures that above equations
hold as equations for convergent power series in a neighbourhood of the origin, which is
needed for this substitution to be legitimately.

The pg roots of @ deliver py equations for the polynomial U which has degree < pg — 1.
Hence we can reconstruct U via Hermite interpolation (or via Lagrange interpolation if
all zeros of @ have multiplicity 1). Because the & are zeros of a polynomial and hence
algebraic in z1,...,2z4-1 we get that U(x) and hence Fy(x) is algebraic if K(x) is.

It remains to show the existence of the roots &;. Consider

_ P Pa—h
Q(0,...,0,zq) = 2 — E ON
heH,hy=--=hg_1=0

Because {z € RY : z > 0} N H = () we have that hq < 0 for all h € H such that

hi =+ = hg_1 = 0. Hence pj — h —d > pg for all such h. This implies that z4 = 0
is a root of Q(0,...,0,z4) with multiplicity p;. Hence at least pg roots of @ satisfy the
condition (2.7). O

Corollary 2.13. All walks in the quarter plane or in the half plane y > 0 with steps (i, j)
such that i > 0 for all i have an algebraic generating function.

12



Proof. For such a step set, the second entry of the apex is 0, hence the apex has at most
one positive entry and we can apply the previous theorem. O

Corollary 2.14. Walks in the half line N with integer steps have an algebraic generating
function.

Proof. Let ny,...,npwithn; € Zfori=1,...,k the step set of our walk. We add an artifi-
cal second component to our steps such that we have a new step set S = {(n1,1) ..., (ng, 1)}.
This new walk is a walk in the quarter plane since the y component will always be positive
by definition of the new step set and we are not allowed to leave the half plane z > 0.
Projecting down to the z-axis gives us our original walk. The new step set has apex (p1,0)
where p; is either a positive integer or zero. Hence we have an apex with at most one
positive component and can apply the previous result. ]

Remark: The same result holds for weighted walks in N. (without proof)

Corollary 2.15. Walks in the half plane with integer steps always have an algebraic
function.

Proof (sketch): Consider walks in the half plane y > 0. They can be viewed as weighted
walks (in y) with weights in Z(x). As seen above, they always have an algebraic generating
function. O
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3 Walks in the quarter plane

3.1 The number of non-equivalent non-trivial walks

Considering walks with steps N, NE, E, SE; S, SW, W and NW in the quarterplane, there
are only finitely many models to study, to be precisely 28. Some of them are trivial, for
example S = () or S = {W}. Among the remaining cases it can happen that one of the
constraints given by the quarterplane is automatically fulfilled (for example, walks with
step set S = {N, NE, SE, S} will always be on the nonnegative side of the y-axis, we only
have to consider if they are above the z-axis). These walks are equivalent to a walk in
the halfplane and we already know that walks in the halfplane always have a algebraic
generating function.

We will show that out of these 28 = 256 models there are only 138 true two-constrained
walks, which are thus worth considering in more detail. Among these remaining problems
some are equivalent up to an x/y symmetry. We will show that there are 79 essentially
different true two-constrained walks.

A step (i,7) is defined to be z-positive if ¢ > 0. We define z-negative, y-positive and
y-negative steps analogous. There are some reasons that reduce a walk in the quarter
plane with step set S to a simpler problem: If S contains no z-positive steps, we can
ignore the z-negative steps in 5, since they will not be used in a quarter planes walk.
Hence, the problem is reduced to counting walks with vertical steps on a vertical half-line.
The solution of this problem is always algebraic. If S = 0, S = {y} or S = {y} it is
even rational. If S contains no y-positive step, the problem also has an algebraic solution
because of symmetry.

If S contains no z-negative step all walks with step set S starting in (0,0) lie in the half-
plane ¢ > 0. We only have to check if the y-coordinates of the points of our walks are
nonnegative, too. Hence our walk with step set S in the quarterplane is equivalent the
walk with step set S in the halfplane j > 0. Hence its generating function is algebraic.
Due to symmetry the same holds for walks with no y-negative step.

Therefore we can restrict ourselves to sets S containing z-positive, x-negative, y-positive
and y-negative steps. We can count their number by an inclusion-exclusion argument;
there are 161 such sets. More precisely, the polynomial that counts them is

Pi(z) = (14+2)% =41+ 2°+2(1+2)* +4(1 +2)° —4(1 +2) + 1

= 28 4+ 827 + 2820 + 5225 + 502* + 2023 + 222

One of the 4 terms (1 + 2)5 counts the sets with no z-positive steps, one term (1 + z)3
those with no z-positive and no y-positive steps, and the terms (1 + z)2 count the steps
with no x-positive nor x-negative or no y-positive nor y-negative steps respectively, and
so on. The step sets we have discarded are either trivial or can be solved using the kernel
method.

Among the remaining 161 sets, some do not contain any steps with both coordinates
nonnegative. For such sets the only walk in the quarter plane is the empty walk. Such
sets are subsets of {T, 7,7y, 2y, Ty}. But since we assumed that S contains a z-positive
and a y-positive step, the steps 7 and Ty have to belong to S. The other three steps may
or may not belong to S, giving us 2% = 8 step sets we can exclude. So we only have 153
sets to consider and our new generating polynomial is

Py(z) = Pi(2) — 22(1 + 2)% = 2% + 827 4 2820 4+ 5125 + 4721 + 1723 + 22

14



Another reason that simplifies our problem is when one constraint of the walk to be in
the quarter plane implies the other. If all walks with step set S that end in a point with
nonnegative z-coordinate automatically end in a point with nonnegative y-coordinate, we
say that the z-condition implies the y-condition. In this case, the steps i and xy do not
belong to S. Since we assumed that there is a y-negative step in S. we have Ty € S.
But then x can not belong to S because the some walks with a nonnegative final abscissa
would have a negative ordinate, for example a x-step followed by an Ty step. Thus we
have that S C {7, y,zy,Ty,7y} and S has to contain Ty and zy, too, because we also
need at least one z-positive step. Observe that those sets lie above the first diagonal.
Conversely, for any such super-diagonal set, the z-condition forces the y-condition. The
polynomial that counts the super-diagonal sets is 22(1+ 2)3. Because of symmetry we also
need not consider sets where the y-condition implies the x-condition. A similar argument
shows that these are the sub-diagonal sets. Hence, the polynomial counting the number
of non-simple walks is

Py(z) = Py(2) —222(1 + 2%) = 28 + 827 + 2820 +492° + 4124 4 1123,

or said differently, there are 138 walks with non-simple step set.

Symmetries

Among the remaining walks there are some walks which are equivalent up to symmetry.
Among the eight symmetries of the square, only the x/y symmetry leaves the quarter plane
fixed. Hence two step sets obtained from each other by this symmetry can be considered
to be equivalent. So we want to know how many of the 138 sets S have this z/y symmetry.
We repeat the previous counting argument but count only walks with this symmetry and
obtain the polynomials

PP = (14 2)2(1+ 233 —2(1 + 2)(1 + 2%) + 1,
PY™ = P 22(1 4 2)(1 + 22),
PP = P 22 = 28 1227 4+ 428 4 52° 4 524 4323,

Here, for instance P;*™ counts the number of walks that contain z-positive, z-negative,
y-positive and y-negative steps and have a step set with a x/y-symmetry. Hence, the
polynomial that counts the number of non-equivalent models that are neither trivial, nor
equivalent to a 1-constraint-problem is

1
5 (Ps + P = 28 4+ 527 41620 + 272° + 2324 4 723,
Evaluating at z = 1 gives us that there are 79 such models.

3.2 The group of a walk

Let S be a step set that contains x-positive, z-negative, y-positive and y-negative steps
(this is the case for the 79 sets we want to consider). Let S(z,y) be the generating
polynomial of S, i.e.

S(z,y) = Z zlyl.

(i,7)€S
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This is a Laurent polynomial in z and y. We can write S(z,y) as
S(z,y) = A1(@)y + Ao(z) + Ar(z)y = B_1(y)T + Bo(y) + Bi(y)z

where T denotes % Since we assumed that S contains x-positive, x-negative, y-positive
and y-negative steps we get that A_1 # 0, A1 # 0, B_1 # 0 and By # 0. The Laurent
polynomial S(z,y) remains invariant under the transformations

e ()

and

U (2,y) = <x’yi14_11(f))) .

An easy computation shows that ® and ¥ are involutions and hence birational transfor-
mations.

Denote by G(S) the group generated by ® and ¥ (we will only write G instead G(S) if it is
clear which step set we are talking about). We have that G = D,, where D, is the dihedral
group with 2n elements, where n € NU {oo}. For any g € G holds S(z,y) = S(g9(z,y)).
The sign of an element g € G is defined to be 1 if g can be written as an even number of
generators and —1 otherwise.

Remark: It is possible that there exist rational transformations of (x,y) that leave S(zx,y)
unchanged but are not elements of G. Consider for example the step set S = {N, E, S, W}.
Then the transformation (x,y) — (y,x) leaves S(z,y) unchanged, but the orbit of (x,y)
under G is

(z,y) = (@,y) = (Z,7) = (T,7) = (z,9).

Examples: 1) Let S be a step set that remains invariant under the reflection along the
vertical line. Then we have that S(x,y) = S(Z,y) which means that Bi(y) = B_1(y) and
Ai(z) = A;(T) for i = 1,0, —1. The orbit of (x,y) under the action of G then is

(2,9) 3 (@,9) > @ R(@)y) > (2, R(2)y) > (z,9)

where R(x) = ’:*11(563;). Hence G is of order 4.
2) Let S = {N, SE, W} = {Z,y,2y}. Then S(z,y) =T+y+ayand A_;(z) =z, Ai(x) =
1,B_i(y) = 1 and Bi(y) =y. We get that ®(z,y) = (Ty,y) and ¥(z,y) = (x,2y). The
transformations ® and W generate a group of order 6, which we see from considering the

orbit of (z,y):

) @) % @) S @) S @ag) () S (o).

3) Now let S = {NE, S, W} = {7, 7y, xzy}. Thisis the same step set as before after a rotation
about 90 degrees. We have that A_;(z) =1, A1(z) = z,B_1(y) = 1 and Bi(y) = y. This
gives us that ®(z,y) = (Ty,y) and ¥(z,y) = (z,7y). The group generated by ® and ¥
has again order 6 and the orbit of (z,y) is

(z,9) > @g,y) > @,2) S (y,2) > (1,79) > (2,79) > (2,y).

That the groups of example 2 and 3 are isomorphic is not a coincidence, as the following
Lemma shows.
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Lemma 3.1. Let S and S be two step sets that differ by one of the eight symmetries of
the square. Then G(S) = G(S).

Proof. The symmetries of the square are generated by two reflections: the reflection A
along the first diagonal and the reflection V' along the vertical line. Hence it suffices to
prove the claim for S = A(S) and S = V(S). Denote with ® and ¥ the transformations
corresponding to S and with ® and U the transformations corresponding to S.

First consider S = A(S). Then we have that A;(z) = B;(y) and B;(y) = A;(z) for
I =1,0,—1. Define § as 0 : (x,y) — (y,z).The transformation ¢ is an involution and an
easy computation shows that ® = §o®o0d and ¥ = § o U o0 §. Hence G(S) and G(S) are
conjugated by 0 and therefore isomorphic.

Now let S = V(S). In this case A;(z) = A;(x) and B;(y) = B_;(y) for i = 1,0, —1. Let
v: (z,y) — (z,y). Then we get that ® = vo ®ov and ¥ = v o ¥ o v. Because G(S) and
G(S) are conjugated by v we get that they are isomorphic. O

This group of a walk also appears in Fayolle’s, lasnogorodski’s and Malyshev’s book [16].
The construction of the group that was given there might seem a bit more complicated at
first glance, but is also more insightful, since it shows that this group originates from a
Galois group.

Define ) o
K(z,y) = ayK(z,y) =zy »  a'y/
(3,7)€S

or, if we are dealing with a weighted walk

f((%y) =Ty Z Pi,jiﬂiyj
(i.4)es

where p; ; is the probability of a step in direction (3, j). If the walk contains z-positive and
x-negative as well as y-positive and y-negative steps this polynomial will be quadratic and
irreducible in y over the field C(z) of rational functions in x. Denote by C(z)[y(x)] the
vector space over C(z) generated by 1 and y(z), where y(z) is a zero of K. This vector
space is a field and a field extension of C(x) of degree 2. Each element in C(z)[y(x)]
can be written uniquely as u(x) + v(z)y(x), where u(x),v(z) € C(x). Identify C(z)[y(x)]
with C(z)[T]/K (x,T). Analogously we define C(y)[z(y)] and (C(y)JT]/IN((T, y). Denote

by C(z,y) the field of rational functions in (z,y) over C. Because K is irreducible is the
quotient ring of C(z,y) a field, called Cx(z,y).

Proposition 3.2. The fields C(x)[T]/K(x,T) and C(y)[T|/K(T,y) are isomorphic to
Cila,y).

Proof. For all p € C(x,y) exists a unique pair u(z), V(x) € C(x) such that p = u(x) +
v(z)y(z) mod Q. The isomorphism is then given by

iz s {u(z) +o(@)T} = {u(z) + v(z)y(z)}

where the brackets denote the corresponding equivalence class.
Analogously we define i, : {u(y) +v(y)T} — {u(y) + v(y)z(y)}. O

We have that

Cilz,y) = C@)[T)/K (2, T) = C(y)[T]/K(T,y) = C(z)[y(z)] = C(y)[z(y)]-
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The Galois group of C(x)[y(x)] (respectively C(y)[z(y)]) is cyclic of order 2. Its generator
is U (respectively ®) such that

_ __w(@) _ a®)
(o) = ule V(o) € Cla) Wlyla)) = - B0 =1 )
Bu(r) = wlp¥o() € ) Balp) = - 20 == = a(y)

where
K(x,y) = aa(2)y® + a1 (2)y + ao(z) = ba(y)a® + b1 (y)z + bo(y)-
There are two automorphisms ¥, ® of Cj (z,y) such that U= izoWoistand & = iyo@oigl.
We have that }
U(f(z,y) = f(z,¥(y)) mod Q Vf e C(z,y)
b(g(z,y)) = g(®(x),y) mod Q Vg € Cz,y).

Definition 3.3. The group G of a walk is defined to be the group of automorphisms of
Cgi(z,y) generated by ¥ and ®. It only depends on the step set (and in the case of a
weighted walk also on the transition probabilities p; ;).

We will write ¥ and ® instead of ® and ¥ since usually the context will tell us, where ¥
and @ live.

There are some explicit conditions for the walk to have a group of certain order.

Lemma 3.4. The group of a walk is of order 4 if and only if

p11 P1o P1,-1
det | po1 poo—1 po-1 | =0. (3.1)
b-11 P-10 DP-1,-1

Proof. Define 6 = ®W¥. Since the group is of order 4 we have that 6> = Id which is
equivalent to ®¥ = ¥d. This is equivalent to

Ud(x) =P(x) and PU(y) = ¥(y)

since ¥(x) = and ®(y) = y. Thus ®(z) is left-invariant under ¥ (respectively ¥(y) under
®). Hence ®(z) € C(z) and ¥(y) € C(y).
Thus ¥ and ® are conformal automorphisms on C, and C, and thus fractional linear

transforms of the form . 4§
re+ s Ty+ 8§
D) = w(y) =

Ctx—r _ty—F

where all coefficients lie in C. We have that

<I>(ac): rr+ s

i te®(z) =r(z+ P(x)) + s

< 1,2 4+ ®(z), 2P(z) are linearly dependent over C
_bi(y) bo(y)

" ba(y) ba(y)

< ba(y),b1(y),bo(y) are linearly dependent over C

are linearly dependent over C

Rewriting the linear dependence of the polynomials in the last line of this chain of equiv-
alences as a determinant gives us the claim. O
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Remark: Previously we had that the group of a (unweighted) walk has cardinality 4 if
the walk exhibits a vertical (or horizontal) symmetry. In this case the first and the last
column of the matrix are the same and thus its determinant is zero.

Lemma 3.5. The group G of a walk has order 6 if and only if

Aoz Aszz  Agx Az
Az —Axz Ay —Ap
Ay Azx Agp Az
Az —Ag A —Ag

det

where A;j is obtained from (3.1) if we leave out the i-th line and the j-th column.

Proof. Similar to the previous lemma. O

Theorem 3.6. Out of the 79 walks we want to consider there are 23 models that have a
finite associated group. Among them, there are

e 16 that have a vertical symmetry and hence a group isomorphic to Do (order 4)
e 5 that have a group isomorphic to Ds (order 6)

e 2 that have a group isomorphic to Dy (order 8)
The remaining 56 walks all have an infinite associated group.

Proof. Because ® and ¥ are involutions, we only have to consider the order of ¥ o ®. If
this order is finite and equal to n, the corresponding group is G =2 D,,. In the previous
examples we already saw that groups with a vertical symmetry have D4 as corresponding
group. For the other walks with groups of finite order it can be easily computed that Vo ®
has finite order.

The proofs that G(S) is infinite for all the other step sets are more difficult. Bousquet-
Mélou and Mishna presented two strategies in [12]. It depends on S which of them can be
used (the first one works of i + j > 0 for all 4, j € S, the second in the remaining cases).

1. The valuation argument

Let z be an indeterminate and z and y Laurent series in z with coefficients in Q with
valuation a respectively b. We assume the trailing coefficients [2?]x respectively [2°]y to
be positive.

Define 2’ by ®(z,y) = (2’,y). Then the trailing coefficient of 2’ (and y) is positive and
the evaluation of 2’ (and y) depends only on a and b:

¢(a,b) == (val(z'), val(y)) —a+ b —vi"), b for b >0
a, = (val(x ), val(y)) =
—a+b(dY] —d¥),b for b <0
where pz(y) respectively dz(,y) denotes the valuation respectively the degree in y of B;(y) for
I ==l

Analogously we define 3/ by ¥(z,y) = (x,y’). This is well defined and the valuation of =
and ¢y’ again only depend on a and b:

a,—b+ a(vftl) — U(m)) fora >0

1
d} a,b = (val(z ,Val y' =
(a,b) (val(z) (%)) . —b+ a(d(fl) _ dg“)) fora <0
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(z)

where v,

for ¢ = +1.
To show that G is infinite it suffices to show that G’, the group generated by ¢ and
infinite. This can be shown by finding (a,b) € Z? such that the orbit of (a,b) under the
action of G’ is infinite. Let S be a step set with ¢ +j > 0 for all i,7 € S. Then we have
that A_1(z) = « and B_1(y) = y, hence ’UEEI) = d(fl) = v@l) = d(f’l) We also have that

Ugw) _ v§y)

(=)

or d;’ respectively denotes the valuation respectively the degree of A;(x) in

= —1 since S contains both Ty and xy. Hence ¢ and ¢ are given by

(—a + 2b,0) for b>0
¢(a,b) = ()
(—a+0b(1—dy”),b) for b <0

and
a,2a—b fora>0
(a,—b+a(l—dy")) fora <0

With induction on n can be shown that
($09)"(1,2) = 2n+1,20+2) and G0 (o) (1,2) = (2n+3,2n +2).

Since all pairs have positive entries we do not need to know dgﬂc) and dgy). Hence the orbit
of (1,2) under the action of ¢ and ¢ is infinite, and thus also G’ and G.

In the remaining 51 cases this method did turned out to be successful since there could
no point (a,b) with infinite orbit under G’ be found. But there is another argument for
these cases that takes fixed points of 6 = 1 o ¢ into consideration.

2. The fixed point argument

We do not have to consider all of the remaining 51 models, since walks that differ only by
one of the eight symmetries of the square have the same associated group. If we take this
into consideration, we are left with 14 models:

four of them with 4 steps

/Iﬁ /Ti /M /T<

six with 5 steps

J5 NS b 8 K

three with 6 steps

K&K

and one with 7 steps

o

Suppose that © = W o ® is well defined in a neighbourhood of (a,b) € C? and (a,b)
is a fixed point of ©. Then a and b are algebraic over Q. Write © as © = (©1,03) where
©; are the coordinates of ©. Then O;(x,y) is a rational function in x and y. Locally
around (a, b) the function © can by Taylor series expansion be represented as

O(a+u,b+v) = (a,b) + (u,v)Jap + O(u?) + O(v?) + O(uv)

where J, 5 is the Jacobian matrix of © in (a, b):

00 00
. 61(a,b) 32(a>b)
o ("’531 @h) ey
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Iteration yields for m > 1:
0™ (a+u,b+v) = (a,b) + (u,0)J35 + O(u?) + O(v*) + O(uv).

Suppose that G(S) is finite of order 2n, then © has order n. This implies that ©"(a +
u,b+v) = (a,b) + (u,v) hence J;;. In particular, all eigenvalues of J, are roots of unity.
The strategy to prove that G(S) is infinite is finding a fixed point (a,b) of © and com-
puting the characteristic polynomial x(X) for the Jacobian matrix J,;. We have that
X(X) € Q(a,b)[X]. To decide whether the zeros of x are roots of unity, we eliminate a
and b from the equation x(X) = 0 and obtain a polynomial (X) € Q[X] that vanishes for
all eigenvalues of J, ;. If none of its factors is cyclotomic then G(S) is infinite. Because all
cyclotomic polynomials of fixed degree are known one can easily check if our polynomial
is cyclotomic.

We will illustrate how this strategy works for one of the above step sets.

Example: Consider the step set S = {x,y,Z,7y}. Then we have that O(z,y) =
Vo ®(z,y) = (Y, + 7). Bach pair (a,b) with a?* +a®> =1 and b = a% is a fixed point of
©. Consider such a pair. Then

and
X(X) = det(XT — J,p) = X2+ X(1 +a*) + a® + a*.

Let X be a zero of x. Eliminate a (because a* + a3 = 1 this is possible) and obtain
X(X) = X%+ 9X7 +31X°% +62X° + 77X? +62X3 +31X2 +9X +1 = 0.

The polynomial  is irreducible and different from all cyclotomic polynomials of degree
8. Hence its zeros can not be roots of unity and we get that J7'; = I for all n > 1. This
implies that G(S) is infinite.

The same strategy also works for the other thirteen remaining models. For each model
exists a condition for (a,b) to be a fixed point and a polynomial x(X) € Q[X] that van-
ishes on all eigenvaules of J, ;. Then can be checked that none of its factors is cyclotomic.

Remark: This strategy does not work in the five cases of the valuation method. Three
of these models do not have any fixed point of ©. In the other two cases there exists a
fixed point but we have that ng =1.

3.3 Some tools and techniques

Let S be one of the 79 step sets we want to consider. Denote with Q the set of walks
with steps in S starting in (0,0) and remaining in the first quadrant. Let ¢(,j,n) be the
number of such walks with length n that end in position (4, j) and Q(x,y,t) the associated
generating function, i.e.

Q(l‘,y,t): Z Q(Z}]}n)fviyjt”.

1,5,n2>0

This is a formal power series in ¢ with coefficients in Q[x, y].
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A functional equation for @)

Lemma 3.7. As a power series in t the generation function Q(x,y,t) = Q(x,y) of the
walks with step set S in the quarter plane starting in (0,0) is determined by the following
functional equation

K(z,y)zyQ(z,y) = xy — trA_1(x)Q(x,0) — tyB1(y)Q(0,y) + teQ(0,0)

where
K(z,y)=1—-tS(z,y) =1—1t Z xly!
1,jES
is the so called kernel of the equation and A_1(x) and Bi(y) are the coefficients of T
respectively y in S(x,y) (as in the previous section) and ¢ is 1 if (—1,—1) € S and zero
otherwise.

Proof. The idea of the proof is to construct the walk step by step. We start with the empty
walk and always focus on the new step at the end of the walk. The empty walk has weight
1. Adding a step to a walk has generating function tS(x,y)Q(x,y). But we have take into
account that some of these walks will leave the quadrant. This will happen if we add a
y-negative step to a point with ordinate 0 or an z-negative step to a point with abscissa
0. The walks with ordinate 0 are counted by Q(z,0), while the walks with abscissa 0 are
counted by Q(0,y). Hence we have to subtract tgA_;(z)Q(x,0) and tzB_1(y)Q(0, y) from
the total number of walks. But if (—1,—1) is in the step set, we subtracted those walks
twice, once with the x-negative walks and once with the y-negative walks. We have to
correct this mistake by adding tezyQ(0,0). This inclusion-exclusion-argument gives us

Q(z,y) =1+ tS(x,y)Q(z,y) — tyA_1(z)Q(x,0) — tTB_1Q(0,y) + etzyQ(0,0).

Multiplying with zy and using the definition of K (z,y) gives us the claim of the Lemma.
The fact that this functional equation determines Q(x,y,t) completely (as a power series
in t) comes from the fact that the coefficient of t" in Q(z,y,t) can be computed inductively
via this equation. This is closely related to the fact that the walks in Q can be described
by a recursion. 0

Orbit sums

In the previous section we saw that all transformations g € G(S) leave the polynomial
S(z,y) unchanged. Hence they also leave the kernel K (z,y) = 1 — tS(z,y) unchanged.
We can rewrite the equation from lemma 3.7

K(z,y)zyQ(x,y) = zy — F(z) — G(y) +tQ(0,0) (3.2)

where F(z) = tzA_1(2)Q(z,0) and G(y) = tyB_1(y)Q(0,y). Replace (z,y) by ®(z,y) =
(2',y) and obtain

K(z,y)2'yQ(a',y) = 2’y — F(2') — G(y) +teQ(0,0) (3.3).

Subtracting (3.3) from (3.2) gives us

K(z,y)(zyQ(z,y) — 2'yQ(a,y)) = xy — 2’y — F(x) + F(a').
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In the above equation we have eliminated G(y). We can repeat this process with (2/,y') =
U(2',y) to obtain

K(z,y)(zyQ(z,y) —2'yQ (', y) +2'y' Q2 y)) = zy—2'y+ 2"y — F () — G(y') +tQ(0,0).

Now F(z') has vanished. If G is finite of order 2n we can repeat this process until we
reach (¥ o ®)"(x,y) = (z,y) again. Said differently, we are considering the alternating
sums of the functional equations of the orbit of (x,y). All unknown functions on the right
hand side vanish and we obtain

Proposition 3.8. Suppose that G(S) is ﬁm’te. Then we have

Zﬂgn (zyQ(z,y,t)) = Zagn g(zy) (3.4)

geqG JU Yt geG
where g(A(x,y)) := A(g(z,y)) for g € G.

The right hand side is a rational function in x,y and . We will see later that this identity
implies that 19 of the 23 walks with a finite associated group have a D-finite generating
function.

The four remaining models are Gessel walks (step set S = {x, T, zy,Ty}), walks with step
set S1 = {Z,y, 2y}, So = {z,y,Ty} or S; U Sy. Note that all of these step sets have an
x /y-symmetry, which implies that (y, z) lies in the orbit of (z,y). More precisely, the orbit
of (z,y) is for all of the above walks

(2,9) 5 @G, y) > @,2) > (y,2) > (43,79) > (2.79) > (2,y)-

If g(x,y) = (y,x) then sign(g) = —1. Hence the right hand side of the equation in the
proposition vanishes for these models and the equation becomes

ryQ(z,y) — TQ(TY, y) + ¥Q(TY, ) = xyQ(y, x) — ZQ(y,7y) + yQ(x, TY).

But this equation already follows from the obvious relation Q(x,y) = Q(y,z), hence we
don’t get any new information. But we can solve three of these models by considering sums
over the half-orbit. Because A_j(z) = B_1(z) the identity for the half-orbit summation is

a:y—w—l—y—i—%wA ( )Q(.%’,O) +t5Q(070)
K(z,y) '

ny('T?y) - EQ(J:ya ) + yQ(CUy, )

Remark: For Gessel walks one obtains from the proposition
> " sign(g)g(zyQ(x,y)) = 0.
geG

But there is no symmetry explaining this result.

The roots of the kernel

Lemma 3.9. Let Yi(z) and Ya(x) be the roots of the kernel K(z,y) =1—13; o zlyl,
where K(z,y) is considered as a polynomial in y. They are Laurent series in t with

coefficients in Q(x):

1 —tAg(z) — /A(2) 1 —tAo(z) + /A(z)
Yi(w) = 21 A (2) and Ys(x) = 21 A (2)
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where
A(.%') = (1 — tA[)({L'))Z — 41514_1141(33).

The valuations of Y1 and Ya in t is 1 respectively —1. Furthermore is K(x,y) a power
series in t with coefficients in Q[x,y,T,y| and the coefficient of y’ in this series is

1 1 1 1
= — —1]. (3.5
K(z,y)  /Ax) (1 —gn(z)  1-y/Ya(z) ) 39
Proof. The equation K(z,y) = 0 can be rewritten as
y = t(A_1(2) + yAo(z) + y* A1(2)).

This quadratic equation has the above solutions Y; and Y3. Since A(z) = 1+ O(t) the
1

series Ys has valuation —1 in t. Its first term is ) The equation

1 Ao(ﬂ?)

Yl(l‘) - Yg(l‘) = tAl(x) B Al(IE)

shows that for n > 1 the coefficient of ¢" in Y3(z) is a Laurent polynomial in = (this is not
true in general, for example for the coefficients of t° or ¢~1).

The identity (3.5) follows by partial fraction expansion in y. The series Y; and Y% both
have valuation 1 in ¢. Hence the expansion of y in m is

= YAT T g
K(z,y) zz(x) i>0

Canonical factorization of the discriminant A(x)

Consider the kernel as a polynomial in y. Its discriminant is a Laurent polynomial in x:
A(z) = (1 — tAg(x))? — 4tA_i () Ay ().

Say A has valuation § and degree d in x. Then this Laurent polynomial has § + d roots
X; = X;(t) for 1 <1< d+d. Exactly 6 of them, let’s say X, ..., X;s are finite and vanish
at t = 0. We write

A(z) = AgA_(z)Ay(x)

where
1
A_(@) =A_(z,t) = [[(1 - 7X))
=1
6+d
Al (z) = Ay(z,t) = 1- =
+ + Z‘];_Iyl ( Xl>
" so = boft) = (-1 B2 _ (Cpaaaey [ x,
0= e, X; I=5+1 i

We see that Ag (respectively A_(z) and Ay (z)) are formal power series in ¢ with coeffi-
cients in C (respectively C[z] and C[z]) and constant term 1.
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D-finiteness via orbit sums

Now we are going to show that 19 of the 23 walks with a finite associated group can be
solved via their orbit sum. Among these 19 step sets 16 have a vertical symmetry and 3
do not. We will take a closer look at these three models and we will find a closed form
expression for the number of walks ending in a certain position.

Proposition 3.10. For the 23 walks with finite group (expect for walks with step set
S ={z,y,zy},S = {z,y,7y},S = {x,y,7,y, 2y, 7y} and S = {z,T,zy,Ty}) holds: The
rational function

R(z,y,t) = Z sign(g

’ gEG

is a power series in t with coefficients in Q(x)[y,y], i.e. the coefficients are Laurent-
polynomials in y with coefficients in Q(x). The positive part in y of R(x,y,t), called
Rt (z,y,t), is a power series in t with coefficients in Q[z,Z,y]. Extracting the positive
part in x of RY(x,y,t) gives xyQ(z,y,t). Summarized

2yQ(x,y,t) = [”°)[y" | R(z, y, t).

In particular, Q(z,y,t) is D-finite. The number of walks with n steps ending in (i,j) is

q(i, 3, i) = [z | Y sign(g)g S(x,y)"
geG

S

(a,b)esS

where

18 the characteristic polynomial of the step set.

Proof. We start with the 16 walks with an associated group of order four. They all have
a vertical symmetry and hence K(z,y) = K(Z,y). As we saw in the examples before the
orbit of (x,y)

(2,9) 5 (@.y) > (@ Cla)y) S (2,C2)7) > (x,y)

where C(z) = ‘xl(g). The orbit sum of Prop 3.8 is

2yQ(z,y) — TyQ(T,y) + 7yC(2)Q(T, C(2)y) + 2yC(2)Q(x, C(2)y) = R(z,y).

Both sides of the identity are series in ¢ with coefficients in Q[z,Z, y|. Since only the first
two parts contribute terms with positive exponents in y, by extracting the part positive
in y we obtain

ny(J), y) - ny(fvy) = R+(x7y)'

From the expression on the left hand side we see that R (z,y) has coefficients in Q[x, T, y].
If we are extracting the positive part in  then we obtain zyQ(z,y) = [z”][y”|R(z, y, 1)
because the second term of the left hand side does not contribute.

Consider now the cases S = {Z,y, 2y}, S = {z,T,2yzy} and S = {z,T,y,yay, Ty}. For
each of these sets the orbit of (x,y) consists of pairs of the form (2%, z¢y?) with integers
a,b,c,d € Z. From this follows that R(x,y) is a series in ¢t with coefficients in Q[z, T, y, 7).
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If we extract the part positive in x and y of the orbit sum of proposition 3.8, then in each of
these cases on the left hand side only xyQ(z, y) remains and zyQ(z,y) = [~ ][y”|R(z, y,t)
follows.

That Q(x,y,t) is D-finite follows from the following proposition and the expression for
q(,1,j,t) follows via coefficient extraction. O

Proposition 3.11. If F(xz,y,t) is a power series in t with coefficients lying in C(x)[y,y]
then [y”]F(x,y,t) is algebraic over C(xz,y,t). If the latter series has coefficients in
Clz,,y| its positive part in z, i.e. [v”][y”|F(x,y,t), is D-finite in x,y and t (without
proof ).

The models S = {7, y,zy} and S = {x,Z,y,7, 2y, Ty}

Consider first S = {7, y, zy}. A walk with steps in S that remains in the first quadrant has
in each of its prefixes more north (y) steps than southeast (z7) steps and more southeast
than west (Z) steps. Because of this properties these walks are in correspondence with
Young tableaux of height at most three. The first line tells us when to take a north step,
the second when to take a southeast step and the third when to go west. For example the
tableaux

1[2]5]9]
3167
418

corresponds to the walk
N-N-SE-W-N-SE-SE-W-N

About the enumeration of Young tableaux are several results known. In particular the
number of tableaux of a particular given form (and hence also the number of walks ending
in a given position) can be written in a closed form by the hook length formula. It is
known that the total number of tableaux of size n with height at most three is given by
the n-th Motzkin number. Motzkin numbers can be computed by the recurrence

n—1
M1 =My + Y MM, ;1 =
=0

2n+3 3n
M M, 1.
n-+3 n+n+3 n-l

Proposition 3.12. The generating function of the walks with step set S = {Z,y,xy}
in the quarter plane is the nonnegative part (in x and y) of a rational series in t with

coefficients in Q[x, T, y,7|:
Q(z,y,t) = [2Z][y7] R(z, y,1)

with o L .
7o (1=7m) A - 77y)(1 — 277
1 —t(Tty + zy)
Especially we get that Q(x,y) is D-finite. The number of walks of length n = 3m + 2i + j
ending in (i,7) is given by

G+1)G+1)G+ 5 +2)(3m + 20 + 5)!
mlm+i+ D) m+i+j+2)!

Q(iaja n) =
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The representation n = 3m + 2i + j occurs because before each SE-step has to be a N-step,
and for each W-step has to be both a N- and a SE-step (in total we have i + j + m north
steps, j +m southeast steps and m west steps). In particular we see that

33m

¢(0,0,3m) = 2(3m)! [~ V3

m!(m + 1)!(m + 2) m?*’

Hence Q(0,0,t) and thus also Q(x,y,t) are transcendental. But we have that Q(z, %,t) 18
algebraic of degree two:

11—tz —V1-23t+ %2 — 4%z
B 2xt? '

1
Q($7;7w

In particular the total number of walks with n steps in the first quadrant is the n-th Motzkin
number:

n

k
n>0 k=

Proof. We considered the orbit of (z,y) in second example at the beginning of chapter
3.2. The first result follows from Prop 3.10 with R(z,y) = R(x,y)/(zy). The coefficient
of z'y/t" in R(x,y,t) can be extracted via

(3m + 2i + §)!
ml(m + i)l (m+i+7)!

[y (T +y + 2y)" =

itn=3m+2i+ 7.

The algebraicity of Q(z,T) can be shown by considering the alternate sum of the three
functional equations of lemma 3.7 that are obtained by replacing (x, y) by replacing it with
the first three elements of its orbit. In these three elements y only occurs with nonnegative
exponent. We obtain

K (z,y)(zyQ(z,y) -7y’ Q(Ty, y) —T°yQ(Ty, T)) = 2y — Ty’ +T°y — t2*Q(x,0) — t2Q(0, 7).

We consider two special values of y. First, replace y by Z. The second and the third term
on the left hand side cancel and it remains

K(2,7)Q(z,T) = 1 — tz*Q(x,0) — tZQ(0, 7).
Secondly, replace y by the root Yy(z) of the kernel. Recall that Yy(z) = % ”)A(x).

Because Yy(x) has evaluation 1 in ¢ this substitution is well defined. The left hand side
vanishes and it remains

0 = z2Yy(z) — TV (x)? + Z2Yy(x) — tz*Q(x, 0) — tZQ(0, Z).
If we combine these two equations we get
K(2,7)Q(z,T) = 1 — aYo(x) + TYp(2%) — TYp ().
From this follows that Q(z, Z, t) is algebraic and has the form stated in the proposition. [

The case S = {N, E, S, W, SE, NW} is similar since the orbit of (z,y) is of the same form.
The proof can be done analogously as before. Here Motzkin-Numbers occur, too.
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Proposition 3.13. The generating function of walks with step set S = {N, E, S, W, SE, NW}
in the first quadrant is the in x and y nonnegative part of a rational function:

Q($, Y, t) = [xzv yZ]R(xa Y, t)

with ) )
_ 1—75)(1 — 72y)(1 — a7
Rogt) - Q=T =P =)
l—tlx+y+7T+7+ 2y +Ty)
In particular we have that Q(x,y,t) is D-finite. The specialization Q(x,Z,t) is algebraic
of degree two:

_ 1—t:v—tf—\/(1—t(:v+f))2—4t(1+:n)(l—f).

Q(z,7,1) 2021+ 2)(1 +7)

The total number of walks with n steps in the first quadrant is 2" times the n-th Motzkin

number:
J
2m n 2k
‘ k+1\2k k)

5

8t

e

QL 1.1) = 1—2t—/(1+2t)(1 - 6t) _ Z
n>0

3.4 Half orbit sums

In this section we are going to consider the three models S = {Z,7, xy}, So = {z,y, Ty}
and S3 = S1 U Sa. Due to their z/y-symmetry their orbit sum vanishes. Using half orbit
sums we are going to show that all of these three models have an algebraic generating
function. The result for S; was proven by Bousqeut-Mélou in [11], Sz by Mishna in [26]
and S3 by both of them in [12].

For each of these models we have according to proposition 3.8 that

Yy =T+ G+ 2txA 1 (2)Q(x,0) 4 tQ(0,0)

zyQ(z,y) —TQ(TY, y) + YQ(TY, z) = K(z,y) .

We want to extract the coefficient of y° from this equation. On the left hand side only
the second term contributes and its contribution is ZQ4(Z) where Qg(x) = Qq(x,t) is the
generating function of walks ending on the diagonal, i.e.

Qalz,t) = Y t"a'q(i,i,n).

n,i>0
The coefficient of 4° on the right hand side can be computed via (3.6) and we get

1
A(z)

—ZQq(T) = (ng(:U) — T+ L 2tz A_1(2)Q(x,0) + tQ(O0, 0))

Y
where A(x) = (1—tAg(z))? —4t2A_1(x) A1 (). If we use the expression for Y7 from lemma
3.9, we get
1—tAp(z) — VA(x)
Vi(z) =
1) 2t A; (z)

and the fact that Y7Ys = T we can rewrite the above as

x 1 z(1 —tAo(z)) o MOl
m —TQq(T) = Ar) ( 1A (z) 2tz A_1(x)Q(x,0) +t5Q(0’0)) )
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Recall the canonical factorization of A(z) = AgA4(z)A_(Z) and multiply the equation

with A_;1\/A_(Z) to obtain
A@ (5 -7A41@)Qu@) =

1
AOA+ (%)

Each term in this equation is a Laurent series in ¢ with coefficients in Q[z,Z]. On the left
hand side are only few positive z-powers while on the right hand side there are only few
negative x-powers. We will extract the positive and negative parts in x. From this we will
obtain algebraic expressions for Q4(x) and Q(z,0). From now on we will consider each of
the three models separately.

(—TA1(z) — 2tz A_1(2)A1(2)Q(x,0) + te A1(2)Q(0,0)). (3.7)

3.4.1 Case 1: S = {7,7,zy}

In this case we have that A_q(z) = 1, Ag(z) = T, A1(x) = = and € = 0. Furthermore
A(z) = (1—t7)? —4t%z. The curve A(z,t) = 0 has a rational parametrization in the sense
of the series W = W (t) defined as the only power series in ¢ that fulfills W = #(2 + W3).
Replace t by QJF% in A(x) to obtain the canonical factorization A(z) = AgA4(z)A_(T)
with
42 2

A:W Ap(z)=1—2W* and A_(z)=1-

Extracting the positive part in = form (3.7) gives us

wWWw?+4) W2
4a 4a?’

t 2t2y/1 — 2 W?2

z  (20%22°Q(z,0) — z + 20)W n w
o

From this we obtain an expression for Q(z,0) by W. Extracting the non-positive part in
x from (3.7) gives us

W(W3+4) W2 (a:
t

e Tz (7~ Q@) -

1-— z
t

This gives us an expression for Q4().

Proposition 3.14. Let W = W(t) be the series defined above. Then the generating
function of quarter plane walks with step set { W, S, NE} ending in the x-axis is

1 /1 1 1 1
— (ot Vi),
Q,0.1) tw <2t T (W a:) xW)

The generating function of the walks ending in (i,0) is

, W2i+ Ci W3
Q@ 0.0 = 57 (Ci T )
where C; = (2;)2_%1 denotes the i-th Catalan number. Using Lagrange’s inversion formula
we get that the number of walks of length n = 3m + 2i is
, . 4™(2i 4+ 1) 20\ (3m + 2¢
0,3 2i) = .
403, 0, 3m + 2i) (m+z’+1)(2m+2i+1)<7j>< m >
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The generating function of walks ending on the diagonal is
W -z 1
ty/1—aW(1+W3/4) +22W2/4  at

Qd(a:, t)

Remark: The function Q(0, 0) is algebraic of degree 3, while Q(z, 0) is algebraic of degree
6 and Q(z,y), which can be expressed by Q(z,0) and Q(0,y) = Q(y,0) via the functional
equation, is algebraic of degree 12.

3.4.2 Case 2: S ={z,y, 7y}

This step set is obtained by reversing the previous step set. In particular, we have that
the series Q(0,0) counting the number of walks starting and ending in (0,0) is the same
for both models.

In this case we have that A_;(z) =7, Ao(x) = z, Ai1(xz) = 1 and € = 1. The discriminant
is given by A(z) = (1 —tx)? — 4t?%. It is obtained from replacing x with Z in the previous
discriminant. The canonical factorization of A(x) is

4t W(W3+4) W2,

w2 Ay(x)=1—-———"a+—2? A (2)=1-TW?

Apg =
0 4 4

where W again is the only power series in ¢ fulfilling W = ¢(2+W?3). Extract the coefficient

of 2° from (3.7) to obtain

W2 W(W* +4W 4 8tQ(0,0)
2t 16t

From this we obtain an expression for Q(0,0). Now we extract the nonnegative part in x
from (3.7) and get

z W2 (22tQ(z,0) — 2t2Q(0,0) + t — 2® + 3)W W
t 2t

T 2T aW(W + 4)/d+ 22W2jd | 2at

This gives us an expression for Q(x,0). Finally we extract the negative part in x from

(3.7) and obtain
z_QuE\ [, W2 _ & WP W
t T r ot 2t 2wt

From this we get an expression for Qu(T).

Proposition 3.15. Let W = W (t) be as above. Then the generating function of the walks
in the quarter plane with steps N, E and SW ending in the x-axis is

WH@-W?) t—a®+ta® 22% —aW - W1 —aW(W3 +4)/4 + 22W?/4

1) =
Q(=,0,%) 16t 20t 2wtW

The generating function of walks ending in the diagonal is

aW(@+W)-2 1
t) = —.
Qd(xv ) 2%22v/1 — 2W2 + tx2

In particular, we have that the generating function of the walks ending in (i,1) is

, W?22i +1
[2']Qa(z,t) = M(

21
?

>(2¢+4—(2i+1)w
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With the help of Lagrange’s inversion formula we get that the number of such walks with
length n = 3m + 21 is

(1.7, 3m + 2i) 4m (4 1)2 20\ [(3m + 2i
1,7, 91 1) = .
an (m+i+1)2m+2i+1)\ 4 m

Remark: The series Q(0,0) is algebraic of degree 3, while Q(z,0) is algebraic of degree
6. The series Q(z,y) can be expressed in terms of Q(z,0) and Q(0,y) = Q(y,0) and is
algebraic of degree 12.

3.4.3 Case 3: S = {z,y,7,7, 2y, Ty}

In this case we have that A_;(x) =1+ 7, Ao(z) =2z +7,A1(xr) =1+ x and € = 1. The
discriminant is given by A(z) = (1 — t(x +T))? — 4t*(1 + x)(1 + ). It is symmetric in =

and T. Two of its zeros, say X; and X9 have evaluation 1 in ¢, the other two are given by

X% and X% Consider the two elementary symmetric functions of X7 and Xo (these are

the coefficients of A_(Z). This leads us to the power series Z = Z(t) that fulfills

1-2Z+62%2+4+273% 4+ 24

4=t i-2y

and has no constant term. Replace t by Z in A(x) and obtain the canonical factorization

12 1+ 22

Aozﬁ Ay(z)=1-2Z st + 272 A_(T) = AL(T).

(1-2)
As before we obtain by extracting from (3.7) the coefficient of #° an expression for Q(0, 0):

Z(1—-27 - Z?)

@0,0) = t(1—2)2

If we extract the positive and the negative part from (3.7) we obtain expressions for Q(z, 0)
and Qq(T).

Proposition 3.16. Let Z = Z(t) as above and let

1— 22
Ai(z)=1-2Z 2x—|—Z2m2.

(1-2)

Then the generating function of walks in the quarter plane with step set N, S, E, W, SE,
NW ending in the x-axis is given by

(Z(1 = 2Z)+ 227 — (1 — Z)2%) /A (x)

Q,0,) = 200Z(1 — Z)(1 + x)?

ZO =22+ Z(Z3 4422 =52+ Z)x — (1 —=2Z + 7Z% —4Z23)2x® + 23 2Z(1 — Z)?
2xZ(1 — Z)2(1 + x)2 '

The generating function of the walks ending on the diagonal is

11— Z-22Z+2*Z(Z 1) 1
Qale,t) = tr(1+ z)(Z — 1) /Ay (z) HCOET)
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Remark: The series Q(0,0) is algebraic of degree 4 and Q(x,0) is algebraic of degree 8.
The series Q(z,y) can be expressed by Q(z,0) and Q(0,y) = Q(y,0) via the functional
equation and is algebraic of degree 16. But we have that (1, 1) is algebraic of only degree

4 and fulfills 1

QU1 +tQ)(1 +2tQ + 21°Q?) = Tt

Also in this case, Motzkin numbers appear again.

Corollary 3.17. Let N = N(t) be the only power series in t satisfying
N =t(1+2N + 4N?).
Up to a factor t this series is the generating function of 2"M, where M, is the n-th

Motzkin number:
2 " 2k
-3 zm( ()

n>0

Then the generating function of all walks in the quarter plane with step set N, S, E, W,

SE, NW s given by
1 1+2N
1,1 —1

and the generating function of the walk ending in the origin is

QO,0t) =" _ 2

3.5 Walks with an infinite group

So far, we have classified all lattice walks with a finite group (except Gessel walks, which
we will consider in the next section). But what about the 56 walks with an infinite group?
Five of them are singular, namely

X

The generating function of these five walks was proven to be not D-finite by Melczer and
Mishna in [25] via singularity analysis. For the 51 remaining walks we have an result by
Kurkova and Raschel:

Theorem 3.18. For each of the 51 nonsingular walks with a infinite group the set ( |S|>
where |S| is the cardinality of the step set, splits into a subset H and (O, m) \ H. Both
of them are dense in <0, |—é|) and fulfill

1. The functions x — Q(x,0,t) and y — Q(0,y,t) are D-finite fort € H

2. The functions x +— Q(x,0,t) and y — Q(0,y,t) are not D-finite fort € (O, ﬁ) \ H

From the second part of theorem 3.18 follows that (z,y,t) — Q(z,y,t) is not D-finite.
The main idea of the proof is to lift the kernel equation K(x,y) to a Riemannian surface
of genus 1 and then study its branches there (the full proof can be seen in [22]). We will
encounter a similar idea when we study the proof of the algebraicity of Gessel walks by
Bostan, Kurkova and Raschel in the next chapter.
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4 Gessel walks

Gessel walks are walks in the halfplane starting at the origin with step set W, E, NE, SW.
They are the only step set for which the approach via the group of a walk did not turn
out to be successful. Denote

G(x,y,t)= > g(i,j,n)a'yt"

1,5,n=>0

the generating function of the Gessel walks. Gessel considered such walks with endpoint
(7,7) = (0,0). Their counting sequence starts with

1,0,2,0,11,0,85,0,782,0,8004,0,. ..

He observed that the first terms of this sequence admit a closed form expression using
hypergeometric series. This led to the Gessel conjecture, a statement that remained open
for years but was finally proven true. The first proof by Bostan and Kauers in 2008 (see
[6]) was computer aided. In 2014 Bostan, Kurkova and Raschel gave a proof of Gessel’s
conjecture without computer aid that uses higher complex analysis and properties of the
Weierstraf-p-function (see [8]), while in early 2015 Bouquet-Mélou came up with a proof
that uses some kind of generalization of the kernel method (see [9]). We will have a look
at all three proofs, since they are very different in nature.

By a linear transform Gessel walks can be interpreted as simple walks, i.e. walks with step
set N, E, S, W in the 135°-cone. Simple walks in other cones are well studied. For exam-
ple, the number of simple excursions with n steps in the halfplane is given by (2”;1) Ch,
n%rl(%?) is the n-th Catalan number. The number of simple excursions with

n steps in the quarter plane is C,Cy,11 and C,,Cp 0 — C?l

where ¢,, =
41 for the 45°-cone.

4.1 Bostan’s and Kauers’ computer aided proof

Theorem 4.1. (Gessel conjecture) For the series G(0,0,t) holds

51 5 o (5/6)n(1/2)n
G(0,0,t) = 3F ,,1;,2;16752) =) LT (44)2n
000 =3 (G315 2 5@, 1
where
= (a1)n---(ap)n _,
Fylai,...,a,;b1,...,b4;2) = -
p q( 1 py V1 q ) TLZ:;) (bl)n(bq)n
is the hypergeometric series in z with parameters ay,...,ap and by, ...,by. The expression
(@), =ala+1)----- (a +n —1) denotes the (rising) Pochhammer-Symbol.

This result implies that G(0,0,t) is D-finite. It even holds that G(0,0,t) is algebraic
because of the alternative representation

51 5 1 /1 1
F=,-,1,2,216t% ) = = | = Fi(—1/6,-1/2;2/3;16t%) — = | .
3 2(6727 737 ’ 6 > t2 <22 1( /67 /7 /37 6 ) 2)

This series is algebraic due to Schwarz’s classification of algebraic 9 F}’s [29], but for a long
time it was overlooked that the parameters ((—1/6,—1/2;2/3) fit case III of Schwarz’s
tables.
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Corollary 4.2. G(0,0,t) is algebraic.
Proof. The idea is to find a polynomial P(T,t) € Q[T,t] that admits

& 5/0nl1/2n
90 =2 55, (2), 1

as root. With the help of the theorem this implies that P(7,¢?) is an annihilating polyno-
mial for G(0,0,¢). Such a polynomial can be guessed starting from the first few, say 100,
terms of the series g(t) with the help of a computer.

By the implicit function theorem this polynomial admits a root r(t) € Q[[¢]] with r(0) = 1.
Because P(T,0) = T — 1 has a single root in C, the series r(t) it the unique root of P.
Since r(t) is algebraic and hence also D-finite, its coefficients satisfy a recurrence with
polynomial coefficients, namely

(n+2)(3n+5)gn+1 —4(6n+5)(2n+1)g, =0, go=1.

The solution of this recurrence is g, = %16". Hence ¢(t) and r(t) coincide and
thus g(t) is a solution of P, hence algebraic. O

The statement of the corollary can be generalized to

Theorem 4.3. G(z,y,t) is algebraic.

In contrast to the counting sequence of excursions ¢(0,0,n) the series g(i,7,n) is not
hypergeometric for arbitrary (i, j) € N2. Moreover, there seems to exist no closed formula
at all for g(i,j,n) for arbitrary (i, 7).

The proof of this theorem uses an approach based on automated guessing. The annihilating
polynomials that occur there are far too large to be printed out, they are even too large
to be processed efficiently by many standard computer algebra systems.

lllustration of the main ideas with Krewera’s walks

In [6] Bostan and Kauers first considered Krewera’s walks (step set NE, S, W) to illustrate
the main techniques used in their proof. We already saw in the previous section that their
generating function is algebraic. As we will see later, the proof for Gessel walks is similar
to the proof for Krewera walks, but some additional difficulties occur.

Denote f (i, j,n) the number of Krewera’s walks with n steps starting in the origin and end-
ing in (4,j) and F(x,y,t) their generating function. Then the sequence f(i,j,n) satisfies
the following recurrence

fl,jm+1)=fi+1,4,n)+ f(i,j+1n)+ fi—1,7—1,n)
for n,i,7 > 0. Together with the boundary conditions f(—1,0,n) = f(0,—1,n) = 0 for

n >0 and f(i,7,0) = d; 0 the recurrence gives us the functional equation

1 1 1 1
F(x,y,t) =1+ < + = —i—:cy) tF(z,y,t) — —tF(z,0,t) — —tF(t,0,y).
Ty Yy x

Using the fact that F'(0,y,t) and F(y,0,t) are equal because of the x/y symmetry of the
step set and multplying with xy this equation becomes

34



Now we apply the kernel method and use the substitution

x—t——4t223 + 22 — 2t + t2

12
=t+-t*+
T

2?41 323 +1 _
— %+ p th+ .. € Qlz, 7[[t]].
This substitution is legitimate because Y (x, t) has positive valuation and puts the left hand
side of (4.1) to zero. Hence U = F(z,0,t) is a solution of the reduced kernel equation
Y (x,t Y (x,t
U, t) = 208D Y@ 500 p. (42)

t T

The most important feature of the equation (4.2) is that its unique solution in Q[[x,?]] is
U = F(z,0,t). This is a consequence of the following

Lemma 4.4. Let A, B,Y € Q[z, 7|[[t]] with ord,B > 0 and ord;Y > 0. Then there exists
at most one U € Q|[z,t]] such that

U(z,t) = A(z,t) + B(z,t) - U(Y (2,1),1).

Proof. Because of linearity we only have to show that the only solution in Q[[x,¢]] of
the homogeneous equation U(z,t) = B(x,t) - U(Y (x,t),t) is the trivial solution U = 0.
Suppose U is non-zero. Then the valuation of B(z,t) - U(Y (z,t),t) is at least equal to
ord; B + ord,U and hence strict greater than the valuation of U(z,t), a contradiction. [

Now we are ready to prove

Theorem 4.5. F(z,y,t) is algebraic.
Proof. The computer-assisted proof consists of two steps.
1. Guess an algebraic equation for the series F'(z,0,t) by inspecting its initial terms.

2. Prove that the equation guessed in the first step admits exactly one solution in
Q[[z, t]], denoted by Feana(x,0,t), and that the power series U = Fiand(z,0,t) satis-
fies the reduced kernel equation (K;eq).

If this is accomplished, the fact that U = F(z,0,t) satisfies (kyeq) and the above lemma
(with A(z,t) =Y (z,t)/t and B(x,t) = =Y (z,t)/x) give us that Fianq(x,0,t) and F(z,0,t)
coincide.

Hence the series F(x,0,t) satisfies the guessed equation and is thus algebraic. Because
Y (x,t) is algebraic, too, and algebraic power series are closed under addition, multiplica-
tion and inversion we get that F'(x,y,t) is algebraic using equation (4.1). O

Guessing

It is possible to determine potential equations that a power series may satisfy using its
first few terms, for example by making an ansatz with underdetermined coefficients. In
practice Gaussian elimination or algorithms based on Hermite-Padé approximation are
used. Computing such candidate equations is called automated guessing.

If we know sufficiently many terms of the series, automated guessing will find an equation
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whenever there is one. But this method has two possible drawbacks. First, it may return
false equation (although this virtually never happens in practice). Second, the precision
required to recover the equation is very and can take very long unless specific software
and efficient algorithms are used.

The guessed polynomial for F'(z,0,t) that Bostan and Kauers obtained is

P(T,z,t) = (1623t* + 108t* — 72t + 822t? — 2t + )
+ (962215 — 48231 — 144¢% 4 10413 — 16222 + 2t — )T
+ (48245 4 192218 — 2642%° + 6423t* + 3261 — 32243 + 922¢) T
+ (192237 4 128t7 — 96245 — 1922t° + 12822t° — 3223t T3
+ (482°t% + 192228 — 1922317 4 5624¢5)T*
+ (9624t — 4825¢%)T° + 1625¢1°T°,

Now the correctness of the guessed polynomial needs to be verified.

Proving

We are going to verify the two statements from step (2) in the proof of theorem 4.5.

First we show the existence and uniqueness of a root of P. Since P(1,z,0) = 0 and
g—g(l,x,O) = —x, the implicit function theorem gives us that P admits a unique root
Feanda(z,0,t) € Q(())[[t]. From this follows that P has at most one root in Q[[z,t]] and
if it exists it belongs to Q[z, Z][[¢]].

For proving the existence of a root the implicit function theorem does not work since
P(1,0,0) =0 and g—;(l, 0,0) = 0. Instead this can be done by an argument using the fact
that the polynomial P(T,xz,t) defines a curve of genus zero over Q(z) and can thus be
rationally parametrized (see [6] for more details).

We also need to show that Fianq(x,0,t) is compatible with the reduced kernel equation
(4.2). This can be done by proving that the power series S(x,t) € Q[x,Z][[t]] defined by
Y(z,t) Y(zx,t
S(a,t) = (f’ ) _ Y@ g (V(@1),0,8)

x
is a root of the polynomial P(T,x,t) and using the fact that the only root of P in
Q[z, Z][[t]], namely Franda(z,0,t). Hence S(z,t) and Fiana(z,0,t) have to coincide and
thus Feang(z,0,t) satisfies the equation (Kyeq).
An annihilating polynomial of S(z,t) can be computed by using the following

Lemma 4.6. Let K be a field and P,Q € K[T,xz,t| be annihilating polynomials of the
power series A, B € K[z, Z][[t]]. Then the following hold

1. For every rational series p € K(xz,t) the series pA is algebraic and is a root of
Pt P(T/p,z,t).

2. The series A+ B is algebraic and it is a root of res,(P(z,z,t), Q(£(T — z),z,1)).
3. The product AB is algebraic and is a root of res,(P(z,t,x), 2491QQ(T/z,t,x))

4. If ord, B > 0, then the composition A(B(z,t),t) is algebraic and is a root of
res,(P(T, z,t), Q(z,x,t)).

Using these computations we get that an annihilating polynomial for S(z,t) is P(T,z,t)?,
which proves that S(z,t) is a root of P(T), z,t).
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Consequences

Setting x = 0 in P gives us that the generating series F'(0,0,t) of Kreweras excursions
is a root of the polynomial 64t573 + 16t3T2 + T — 72t3T + 54t3 — 1. From an argument
similar to the one used in corollary 4.2 follows that the coefficients a,, of F(0,0,t) satisfy
the recursion

(n+6)(2n +9)ant+s —54(n+2)(n+1)a, =0 ap=1,a; =0,a2 =0.

Solving this recursion gives us that the series F'(0,0,t) is algebraic and hypergeometric
and has the closed form

12 3 i 4n (3m)
F(0,0,t) =3 Fy (=, =,1;-,2;27% | = n 3,
( IR ) 3 2<3737 727 ) > 7;)(714-1)(2714-1)

Proof that the generating function of Gessel walks is algebraic

For the proof that the generating function G(x,y,t) of Gessel walks is algebraic one can
use more or less the same proof as before. The main difference is that in the computation
the intermediate expressions will become very big and can only be handled by special
purpose software. There are also some arguments in the proof that are slightly different
because of some complications.

Let g(i, j,n) denote the number of Gessel walks of length n that end in (i,5) € N2. They
satisfy the recurrence

for n,4,7 > 0. Together with the boundary conditions we obtain the generating function

Gz, y,t) = > g(i,j,n)a'yt",
0,20

We want to prove that this series is algebraic. It satisfies the equation
(L+y+aty+a’y®)t—ay)Ga,y, 1) = (L+y)tG(0,y,1) +1G(x,0,1) —tG(0,0,t) —zy. (4.3)

Now we can apply the kernel method. But in this case we lack the z/y symmetry we had
before. Hence there are two different ways to put the left hand side to zero, using the two
substitutions

y = Y(x,t): = —(ta® — x4+t 4+ /(tx? — x + 12)2 — 4222) / (2tz?)
1 241 32241
= —t4 2 J; 2yt ?f L
T T x

and

= X(y,t) = (y—Vyly — 42y +1)2))/ty(y + 1))

1 1)3 2 1)?
_ytl, Wt (y+1)

3+ 4.
y y? y3
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They give us the two equations (4.4):

G(z,0,t) = Yi,t)

+ G(0,0,t) — (1 + Y (x,t)G(0,Y (x,1),t),
(14+y)G(0,y,t) = X(yt,t)y + G(0,0,t) — G(X(y,t),0,t).

Observe that the first equation is free of z while the second is free of y. If we rename y to
x in the second equation, then all terms belong to Q[z, Z][[t]]. Let us rewrite

G(z,0,t) = G(0,0,t) + 2U(x,t)

and
G(0,z,t) = G(0,0,t) + 2V (x,t)

for certain power series U,V € Q|[x,t]]. Using this the above equations are equivalent to
(4.5):

2U(z,t) = W — (14 Y(2,)G(0,0,t) — Y(z,t)(1 + Y (z, ) V(Y (2, 1), 1),
(1+z)aV(z,t) = “’“X(ft) — (1+2)G(0,0,t) — X(z,)U(X (z,1), 1).

These two equations correspond to the equation (4.2) in the section about Kreweras walks.
But the situation here is a bit more complicated. First, we have two equations in two un-
known power series U, V. This difference originates from the lack of symmetry of the
Gessel step set with respect to the main diagonal. Second the two equation still contain
the term G(0,0,t), while it was not present in (4.2). This is because the Gessel step set
contains the SW step while the Kreweras step set does not. But this occurrence is not
really problematic. For the other difference we need an adaption of lemma 4.4.

Lemma 4.7. Let Ay, A, By, B2, Y1,Ys € Q[x, Z][[t]] with ordiB; > 0 and ord,Y; > 0 for
i =1,2. Then there exists at most one pair (U1, Us) € Q|[z,t]]* with

Ul(l‘,t) = Al(a?,t) + Bl(l‘,t) . UQ(Yl(QZ,t),t)),
Ug(l‘,t) = Ag(x,t) + BQ(IL‘,t) . Ul(YQ(LE,t),t)).

Proof. By linearity it is enough to show that the trivial solution (U;,Usz) = (0,0) is the
only solution (Uy, Uz) € Q[[z,]]? of the homogeneous system

Ui(z,t) = Bi(x,t) - Us(Y1i(z,1),1)),

Us(z,t) = Ba(x,t) - Uy (Ya(z,1),1)).

Assume that U; and U, are both nonzero. Then the valuation of Bj(z,t) - Ua(Y1(z,t),t)
is strictly greater than the valuation of Us. Also, the valuation of Ba(x,t) - Uy (Ya(z,1t),1)
is greater than the valuation of Uj(z,t). Putting this together we get ord;U; > ord;Us >
ord;U1, a contradiction. Hence one of U; and U, is zero and the system implies that the
other unknown is zero, too. O

By a slightly adaption the lemma can be refined such as that there is only one triple of
power series (U, V,G) with U,V € Q[[z,t]] and G € Q[[t]] (free of x) which satisfies (4.5).
Now we can continue with the same procedure as before:
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1. Guess algebraic equations for U(z,t) and V(z,t) by inspecting the initial terms of
G(z,0,t) and G(0,z,1).

2. Prove that each of the two guessed equations has a unique solution in Q[[z,?]],
denoted by Ucand(z,0,t) and Veanq(x,0,t) and that the power series Ucang(z, 0, 1)
and Veang(z,0,t) satisfy the two equations in (4.5).

Once this is done lemma 4.7 gives us that these candidate series are equal to U and
V. Hence these series as well as G(z,0,t) and G(0,y,t) are algebraic, which implies by
equation (4.3) that G(x,y,t) is algebraic, too.

Guessing

Since the differential equations for G(x,0,t) and G(0,y,t) seemed to be very big, Bostan
and Kauers tried a modular approach: they set x and y to specific values zg,y0 = 1,2, 3, ...
and additionally kept the coefficients reduced modulo several fixed primes to avoid large
numbers. Modulo a fixed prime p and considering the first 1000 terms of G(z,0,t) and
G(0,y,t) they used a automated guessing scheme based on the Becker-Labahn (FFT-
based) algorithm for computing Hermite-Padé approximations. They made the following
observations:

e For any choice of p and z( there are several differential operators in Z,|[t] (D) of order
14 and with coefficients of degree at most 43 which seem to annihilate G(xo,0,t) in

Zp[[t]]-

e For any choice of p and yg there are several differential operators in Zy[t] (D;) of order
15 and with coefficients of degree at most 34 which seem to annihilate G(0, yo, ) in

Zp[[t]]-
d

Here and in the following D; stands for the differential operator 7 and R[t] (D) denotes
the Weyl algebra of differential operators with coefficients in the ring R.

Then they tried to apply an interpolation mechanism in order to reconstruct the two
candidate operators that will annihilate G(x,0,t) and G(0,y,t) in Q[z][[t]] or Q[y][[t]]
respectively, from the various choices of xg, 9 and p. But it turned out that an unreason-
ably large number of interpolation points g, yo = 1,2, 3, ... was needed, which suggested
a large degree of the operators with respect to x or y, and the computation was aborted.

Their next attempt was to find candidate operators of smaller total size by trading or-
der against degree. They considered the series G(z,0,t) modulo p and tried to find the

least order operator [,g(f; ),0 € Zp[t] (Dy) that annihilates it. This can be achieved by tak-
ing several candidate operators and computing their greatest common right divisor in the

rational Weyl algebra Z,(t) (D;). Similarly they wanted to find the least order operator

Eé{) ;0 € Zp[t] (D) annihilating the series G(0, yo, t).
Using several evaluation points zg,y0 = 1,2,3,... and several primes p it was possible
to reconstruct two candidates £, € Q[z,t] (Dy) and Lo, € Q[y,t] (Dy) with reasonable
degrees in x and y. These two operators are posted on Bostan and Kauers’ website to their
article [7]. The operator L, o has order 11, degree 96 in ¢ and degree 78 in z. Its longest co-
efficient has 61 decimal digits. The operator Lo, also has order 11. Its degree with respect
to t is 68 and only 28 with respect to y. Its longest integer coefficient has 51 decimal digits.
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The exceptionally small size of £, ¢ and Lo, (compared to the intermediate expressions)
speaks in favour of their correctness. The fact that £, and Lo, satisfy

L:0(G(z,0,t)) =0 mod ' and Ly,(G(0,y,t)) =0 mod ¢**%

also provides some empirical evidence for their correctness.

As a next step Bostan and Kauers searched for possible potential polynomial equations
satisfied by the power series U,V € Q[[z,t]] defined by G(x,0,t) = G(0,0,t) + 2U(z,t)
and G(0,y,t) = G(0,0,t) + yV(y,t). Starting from 1200 terms and using guessing tech-
niques based on fast modular Hermite-Padé approximation they found two polynomials
P\(T,z,t) € Q[T,x,t] and Py(T,y,t) € Q[T,y,t] which fulfill

Py (U(z,t),z,t) =0 mod t'?® and Py(V(y,t),y,t) =0 mod t*?%,

These polynomials can also be viewed on their website [7]. The polynomial P; has de-
grees 24, 32 and 44 in T, x and ¢ and its coefficients have at most 21 decimal digits. The
polynomial P, has degrees 24, 56 and 46 in T,y and t and its coefficients have at most
27 decimal digits. If they both were spelled out explicitly they would together fill about
thirty pages, while the operators £, and Lo, together fill over 500 pages.

Bostan and Kauers did a few heuristic test with the polynomials P; and P». Since they
appeared plausible they went on with proving that these polynomials are indeed valid.

Proving

Let P, € Q[T,z,t] and P, € [T,y,t] the polynomials guessed in the previous section.
We will see that these polynomials admit unique power series solutions Ugang(,t) and
Veand(,t) and that these power series fulfill the reduced kernel equations (4.5).

The proof of the existence is here much more complicated than in the case of Krew-
eras’ walks since the implicit function theorem does not apply to these polynomials and
an existence proof using a suitable rational parametrization is not possible either, since
the polynomials define curves of positive genus and therefore do not allow a rational
parametrization. The proof Bostan and Kauers is rather lengthy and technical, hence 1
will only sketch it. The full proof can be read in [6]. It involves a theorem of McDonald
to obtain the existence of a series solution

E : D1q
Cp g™l

p,q€Q

with ¢,, = 0 for all (p,q) outside a certain halfplane H C Q2. Then they computed a
system of bivariate recurrences with polynomial coefficients that the coefficients ¢, ; have
to satisfy and using the form of these recurrences they showed that the coefficients ¢4
of any solution can be nonzero only in a finite union of cones v + Nu + Nw with ver-
tices v € Q% and base vectors u,w € Q? that can be computed explicitly. By applying
McDonald’s generalization of Puiseux’ algorithm they determined the first coefficients of
series solutions to an accuracy such that all further coefficients belong to an translate of
H that does not contain any vertices. Since one of these partial solutions contained no
terms with fractional powers it was possible to deduce that the entire series contains no
expression with fractional powers. Considering v and w implied that there were no term
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with negative exponents either, so the only remaining possibility was that the solution is
actually a power series.

Now it remains to show that these solutions Ug,ng and Viang are compatible with the
reduced kernel equation (4.5). Since X (Y (z,t),t) = x the substitution x — Y (x,t) turns
the second equation of the system into the first. Hence it suffices to prove only the second
equation

X(z,t)x

(14 x)xVeana(z,0,t) = — (14 2)G(0,0,t) — X (z,t)Ucana(X (z,1),0,1).

Denote G1(z,t) := G(0,0,t) + 2Ucanq and Ga(z,t) := G(0,0,t) + Veana(x,0,t). Then the
above equation is equivalent to

xX(x,t)

(1+ 2)Ga(z,) — G(0,0,t) = — G (X (x,1),1).

By corollary 4.2 and lemma 4.6 the power series

xX(x,t)

(14 2)Go(x,t) — G(0,0,t) and — G1(X(z,t),t)

are both algebraic and their minimal polynomials can be computed (but the required
resultant computations are so big that specific software is needed). After determining a
suitable number of initial terms of both series it can be observed that they match. Hence
the above equation holds and the proof of theorem 4.3 is complete. U

Consequences

The fact that G(z,y,t) has some consequences that are of combinatorical interest.

Corollary 4.8. The following series are algebraic:
e The generating function G(1,1,t) of Gessel walks with arbitrary endpoint.

e The generating functions G(1,0,t) and G(0,1,t) of Gessel walks ending on the x-axis
or y-axis respectively.

All these series and G(0,0,t) can be expressed in terms of nested radicals, for example

G(l,l,t):é —34+V3 U(t)+\/W—U(t)2+3

where U(t) = /1 + 43/t + 1)2/(at — 1)1.

The proof of theorem 4.3 did not give us an minimal polynomial of G(z,y,t). But from
the sizes of the minimal polynomials of G(x,0,t) and G(0,y,t) which are known explicitly
it can be deduced that the minimal polynomial p(T,x,y,t) of G(x,y,t) has degrees 72,
263, 287 and 141 with respect to T, x,y and t. Thus it consists of more than 750 million
terms.

Corollary 4.9. For every fized (i,j) the series G, j(t) = oo g(4,7,n)t" is algebraic.
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Proof. Since

1 (d &
Gij(t) = zTy' <dxidij($’y’t)> |z=y=0

and being algebraic is preserved under differentiation and evaluation the claim follows. [

The next result is of computational interest.

Corollary 4.10. For fized i and j the number G(i,j,n) can be computed with O(n) arith-
metic operations.

For fixred x and y the coefficient (t") G(x,y,t) can be computed with O(n) arithmetic op-
erations.

Proof. Since the coefficient sequence G(i, j, n) is P-finite with respect to n by the previous
corollary it satisfies an uniform recurrence with respect to n. Together with appropriate
initial conditions this recurrence allows the computation of g(ig, jo,n) in linear time.

The proof for the second statement works similar. O

4.2 Bostans, Kurkovas and Raschels proof

In their paper [8] Bostan, Kurkova and Raschel proved the following two statements about
Gessel walks

(A) For all n > 0 we have that

L (5/6)a(1/2),
=1 ), 6/3)

where g(i, j,n) denoted the number of Gessel walks of length n ending in (¢, j).
(B) The generating function

G(x,y,t) = > g(i,j,n)a'yt"

1,5,n=>0

9(0,0,2n)

is algebraic.

Their idea was using the fact that a function is algebraic if and only if it has finitely
many branches. By explicitly constructing these branches Bostan, Kurkova and Raschel
could prove the algebraicity.

Fix t € (O,%). To prove (A) and (B) consider the generating functions G(z,0,t) and
G(y,0,t) and the functional equation

K(z,y,t)G(v,y,t) = K(z,0,t)G(z,0,t) + K(0,y,t)G(0,y,t) — K(0,0,)G(0,0,t) — zy

where

o] 1 1 1
K t) = zyt i — = | = 2yt Sy =
(z,y,t) = zy Z ey’ — 5 xy (wy—l—x—&-x—i-my t)
(i.5)€S
is the kernel of the walk. This functional equation is defined for |z| < 1 and |y| < 1. We
want to construct all branches of these functions. To do this we consider meromorphic
continuations of x — G(z,0,t) and y — G(0,y,t) along an arbitrary path in the complex
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plane (not only in their natural domains of definition {z : |z| < 1} and {y : |y| < 1}).
Consider the elliptic curve defined by the zeros of the kernel

Ty = {(z,y) € (CU{o0})? : K(2,y,) =0 (4.6)

and the universal covering of T;. This is the complex plane C,, with a new variable w.
The functions x — G(z,0,t) and y — G(0,y,t) can on their domain of definition be
lifted to T; and further to the corresponding regions of the universal covering, namely to
{weCy : |z(w)| < 1} and {w € C,, : |y(w)| < 1}. They are vertical stripes.

We thus have three levels of the lifting:

e The first level are the complex planes C, and C, where z — G(z,0,t) and y
G(0,y,t) are defined.

e On the second level x and y are not independent anymore. The second level is given
by Tt.

e The third and top level is the universal covering of T;.

The key point of the argument Bostan, Kurkova and Raschel used is defining the lifted
function r,(w) := K(z(w),0,t)G(z(w),0,t). Then

Te(w —w3) = re(w) + fo(w) (4.7)

holds for all w € C,, where the shift vector ws and the function f, are explicitly known.
A similar result holds for G(0,y,t). Equation (4.7) has many consequences:

e According to (4.7) ry can be extended from its domain of definition (which is a
vertical stripe) to the entire of C,. By projection on C, we obtain all branches of

G(x,0,t).

e There is only an finite number of branches which gives us the algebraicity of G(z, 0, t)
and G(0,y,t). With the functional equation we finally get the algebraicity of G(x, vy, t).

e The poles of r, form a two-dimensional lattice and its residues are periodic. Hence
r, is and elliptic function (all poles have order 1). From this an explicit expression
of r, in terms of (-functions can be obtained. By projecting down to C, we obtain
a new expression for G(x,0,t) (and analogously for G(0,y,t) and G(x,y,t)).

e Evaluating G(x,0,t) at x = 0 and using some simplifications gives us problem (A):

(5/6)n(1/2)n

9(0.0.2m)) = 16" 573},

Meromorphic continuation of the generating functions

First we are going to consider the branch points. For the sake of simplicity and since
t is supposed to be fixed we are going to drop ¢ in the notation and write T instead of
T; and G(z,y) instead of G(z,y,t) if there is no confusion. The kernel K (z,y) defines
a polynomial of degree two in x and y. Hence the algebraic function X (y) defined by
K(X(y),y) = has two branches and for branching points, called yi,...,ys. They are the
zeros of the discriminant of the equation K (x,y) =0 in x:

d(y) = (—y)* —4t(y* + y)(y + 1).
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Wehavethaty1—0y4—oo—y—1andy —18t8t116t,y—18t+116t 1.

They are ordered such that y; < y2 < y3 < y4. Because there are four different branchlng
points the Riemannian surface X (y) is a torus 7%. Similar results hold for Y (z) defined
by K(x,Y (z)). the branching points are the zeros of

d(z) = (tz? —z +t)* — 4t%2*  (4.8).
These zeros are real and 1 = 14+2t— A 144t , Ty = 1_2t_2tV 1_4t,x3 = % and x4 = :v% Again
they are ordered such that z1 < 1‘2 < x3 < x4. The Riemannian surface Y (z) is also a

torus T%. Since T% and TY are equivalent we are going to consider only one Riemannian
surface T' with two coverings x,y : T — S.

Next we are going to look at the universal covering. The torus T is isomorphic to
C/(w1Z + weZ) where w; and wy € C are linearly independent over R. They can be
interpreted as the fundamental parallelogram spanned by wi and we glued together at its
edges. The periods w; and w9 are (up to unimodular transformation) unique. In our case
they are given by

T3 dx

w i/l‘2 7dx and w z/
1= 2 = :
z1 —d(x) T2 d(w)

The universal covering of T" has the form (C,A) where C is the complex plane, which is
the union of infinitely many fundamental parallelograms

I, =wi[m,m+1) +wsn,n+1)

glued together and A : C — T is a non-branching covering map. For arbitrary w € C with
Aw =s €T is z(Aw) = z(s) and y(Aw) = y(s). The uniformation formulas are

_ Ao
) )6

B VN (1)
2 (e oy arer) 4

where a(z) = tz?, b(x) = ta® — x +t, d is defined as above and g is the Weierstra$ elliptic
function with periods wy and wo, i.e.

1 1 1
plw) = —5 + Z 2 2
Y=mw1+nwsa (Z o ’}/) v
m,n€Z?\(0,0)

r(w) = x4 + (4.9)

Let us write z(Aw) = z(w) and y(Aw) = y(w). According to (4.9) and (4.10) these are
elliptic functions on C with periods w; and ws. They satisfy

K(z(w),y(w)) =0 YweC (4.11).

Since each parallelogram II,, , represents a torus, the function z(w) and respectively

y(w) attains each value of C U {oo} twice (aside the branch points z1, ..., x4 respectively
Y1,...,Yy4). The points wy, € Iy o where z(w,,) = z; are
w2 w1 + w2 w1
Way = 7 Wap = 5 Way = o wg, = 0.
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w3

w3 w3
2

The points w,, € Ilpg where y(w,,) = y; are shifts of w,, with 5

where ws is given by
1 dx
w3 —/ .
o V@)

For Gessel walks for all ¢ € (0, 1) holds: 2 =3 (4.12).
w2

Le. Wy, = Wy +

Galois Automorphisms

As we saw in section 3.2, the functions

1 1
o) = (53 ) and ntea) = (0] (@3
leave the quantity Z(i, jes x'y’ invariant and span the group of the walk. We have that
2 =n? =id(4.14).

The automorphisms ¢ and n are defined on C? = C, x C,,.

Now we want to lift them on the second level, the torus 7. Each point s € T has
two ”coordinates” (z(s),y(s)). By construction, they fulfil K(z(s),y(s)) = 0. For s €
T arbitrary exists a unique s’ (respectively s”) with z(s) = z(s’) (respectively y(s) =
y(s")). The values z(s) and z(s’) are the two zeros of the equation K (z,y(s)) = 0. The
automorphism £ : T — T is defined by the identity s = s’ and is a Galois-automorphism.
The automorphism 7 : T'— T is defined analogously by ns = s”. The formulas (4.13) and
(4.14) imply that for arbitrary s € T the following hold:

=TS SZLIBS:# S)=Yls 28:2828
z(§s) = x(s) y(&s) 22(5)y(5) (ns) J(26) y(ns) =y(s) &(s) =n"(s)

and &s = s if and only if x(s) = x;,7 € {1,...4} (analogously for ns = s if and only if
y(s) = 4).

There are many ways to lift £ and 71 to the torus 7. Here we want that w,, and w,, are
their fixed points, i.e.

fw=—-w+w +wy and nNw=-w—+w; +ws+w3Vw € C.
Recall that wi + w2 = 2w,, and w1 + ws + w3 = 2w,,. Hence we have that

z(éw) = z(w) and y(nw)=y(w) Yw e C.

Lifting of the generating functions to the universal covering

The domains

{weC:|z(w) <1} and {weC:|y(w) <1}
consist of infinitely many curvilinear strips that differ by translation with a multiple of ws.
The strips that lie in | J,,c;, Ho,n respectively J,,c7 Ilo,, + %5 are called A, respectively A,.
The domain A, (respectively A,) is bounded by vertical lines. The functions G(x(w),0)
respectively G(0,y(w)) are well defined on A, respectively A,. Let

ry(w) = K(z(w),0)G(x(w),0) Yw e A,
ry(w) = K(0,y(w))G(0,y(w)) Yw € Ay

The domain A, N A, is a nonempty open strip. From the functional equation and (4.11)
follows that

re(w) + ry(w) — K(0,0)G(0,0) — z(w)y(w) =0 VYwe AyzNA,. (4.15)
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Meromorphic continuation of the generationg function on the universal covering

Let A be the union of A, and A,. Because of (4.15) the functions r, and r, can be
continued meromorphically on A:

re(w) = —ry(w) + K(0,0)G(0,0) + z(w)y(w) Yw e A,

ry(w) = —ry(w) + K(0,0)G(0,0) + z(w)y(w) Yw € A,.

To continue these functions from A to the entire complex plane C we use that U,ecz(A +
nws) = C. Let

fo(w) = y(w)[z(-w + 2wy,) — 2(w)]  (4.16)
fy(w) = 2(w)[y(—w + 2ws, )y(w)]  (4.17).
Then the following results hold:

Lemma 4.11. The functions ry(w) and ry(w) can be continued meromorphically to C.
For w in C arbitrary holds

re(w —ws) = 12 (W) + fa(w)

(
rylo -+ wg) = 1y (@) + £ () (4.18)
rz(w) + ry(w) — K(0,0)G(0,0) — z(w)y(w) =0 (4.19)
rp(w =1y(w) and ry(nw) =ry(w) (4.20)
re(w+wi) =ry(w) and 71y(w+wi) =1y(w). (4.21)

Theorem 4.12. We have that

CIS(%)—?)CIB( )+2C13( )+3(13(w2)—5C13( )+2C13(3w2)

G(0,0) = o

where (13 is the Weierstrafs-C-function with periods wi and 3ws.

Theorem 4.13. For all w € C holds
R G AL Gy
_ %Cl,:} <w - 138&)2) _ 27@»3 <w B 15;;)2) N 241,3 (w B 17;)2)
- %41,3 (w - 21;2> + %Cm <w - 23;2>

where ¢ 1s a constant.

The constant ¢ can be computed explicitly: ¢ = tG(0,0) — Cl 3 (%) where 61,3 denotes
the above sum of eight {-functions.

A similar expression holds for r,(w) with a different constant. Later we will use theorem
4.12 and 4.13 to obtain explicit expressions for G(z,0,t) and G(0,y,t). With the func-
tional equation we then obtain an expression for G(x,y,t). Before we prove these theorems
we will need a few preliminary results about the poles of f,.

46



Lemma 4.14. In the fundamental parallelogram w1[0,1) + w2[0,1) the function f, has

- wz 3wz Swa 7w2 ; ; 1 11 1 -4
poles in ¢, =g%, 5% and . They are simple poles with residues —o;, 57, 5; and 21;
respectively.

Lemma 4.15. In the fundamental parallelogram wi]0,1) + w2[0,1) are the only poles of
x(w) (of order 1) “¢ and 7‘*’2 and the only zeros (of order 1) are 3% and 5“’2. The only
pole of y(w) (of order 2) is 3‘“’2 and its only zero (of order 2) is 7w2.

Proof of Lemma 4.14: With the definition of f,(w) in (4.16) and (4.17) and the unifor-

mation formulas (4.9) and (4.10) we get fy(w) = %9;/((5)). Hence, if z(w) has a simple

Z€ero respectively simple pole at wy then fy(w) has a simple pole at wy with residue %

respectively —z:. Lemma 4.14 then follows from Lemma 4.15. g

Lemma 4.16. The function r, is elliptic with periods w1 and 3ws.

Proof. According to (4.21) r, is meromorphic and wq-periodic. Lemma 4.11 gives us that
ry(w + dwsz) — ry(w) = fy(w) + fy(w+ws3) + fy(w+ 2ws3) + fy(w+3ws) Vw e C.

According to Lemma 4.14 and (4.12) the elliptic function 6(w) = Sa_, fy(w + kws) has
no poles in C, hence it must be constant and r,(w + 4ws) = r(w) + ¢ for all w € C.
In particular, we have that ry(wy, — 4ws) + 2¢ = ry(wy, + 4ws). From (4.20) follows
that ry(wy, — 4ws) = 7y(wy, + 4ws) which implies that ¢ = 0. It follows that ry(w) is
4ws = 3ws-periodic, hence elliptic with periods w; and 3ws. ]

Proof of theorem 4.13: Since ry is elliptic with periods wi and 3w2 by the previous lemma
and since every elliptic fucntion is characterized by its poles in the fundamental parallel-
ogram it suffices to consider 7, in wi[—3,3) + wa[—2,3). Using a result about the main
parts at poles (see [23], theorem 6) we get that a pole d of r, fulfills N, # () where

5
N, = {n € N: d + nws is pole of f, with — % < Re(d + nws) < {22}
Recall that <2 is real since Re w,, = %. If a point d fulfills ;" # 0 then r, has main
part R4, where

Ray(w)= 3 7(@ 1) Pty @ + i) (4.22)
neN;

where Fy .,y denotes the main part of f, at the pole d+nw3. Hence we have to find the
poles in wq [2, 2) + wo [ 3 2) According to lemma 4.14 they are P = {3“’2 — %W ke
{0,...11}}. Hence N; = {n € N: d+ nw € P}. Then the points d in the fundamental
parallelogram for which NV, # 0 lie in P. Let’s consider them individually:

For k € {0,1,2} are the points d = 342, %2 —% ¢ P guch that N, = {0}. Hence

there is only one term in formula (4.22), namely Rq,(w) = —F4,(w). Lemma 4.14 then

implies that r, has a pole of order 1 in d with residues —2%7 5% 2% respectively.

For k € {3,4,5} the corresponding points d = 3%’2,—5%,—7% € P are such that

N, = {0,1}. A similar argument as above gives us that among them d = —3% is the
only pole of r,. It has residue —%.
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For k € {6,7,8} and d = —%2 —1e2 13 we have that A, = {0,1,2}. All these
points are simple poles of 7, with residues —%, —% and % respectively.

For k € {9,10,11} the points d are —155"2,—17% and —19% with V] = {0,1,2,3}.

For them, all main parts are zero, hence these points are no poles.

To conclude the proof we use the following fact about elliptic functions: For any elliptic
function f with periods @, ® that has in the fundamental parallelogram [0, @)+ [0, @) only
poles w1, ...,w, of order one with residues ry,...,r, there exists a constant c such that f
can be written as

flw) = c—i—ngC(w — Wy).
(=1

Using this we get the claim. O

Proof of theorem 4.12: Equation (4.19) gives us 7, (w) = z(w)y(w) —ry(w)+K(0,0)G(0,0).
We compute K(0,0)G(0,0) using ry(w) = K(0,y(wi))G(0,y(wf)) where wi € A, such
Y _ Two

that y(wg) = 0. Lemma 4.15 gives us an unique solution for w§, namely vw§ = “5%. Hence

12 (W) = 2(w)y(w) — ry(w) + ry(%). Let’s substitute w := 542 in this equation. The point

8
52 5 a zero of x(w) lying in A,, such that

8
r (5?) - K <x <58°"2) ,o) G <x (5;“‘) ,o) — K(0,0)G(0,0) = tG(0,0).

This point is not a pole of y(w), hence x(%)y(%) = 0. This gives us that

tG(0,0) = r, (78“’2> — T <7§2> (4.23).

Using theorem 4.13 and (4.23) we can write G(0,0) as a sum of sixteen (; 3-Weierstraf-
functions (evaluated at a rational multiple of wy). By using the fact that ;3 is an odd
function and some properties of {-functions we can do some simplifications in (4.23) to
obtain the claim of theorem 4.12. g

Proof of Gessel’s conjecture (Problem A)

Our strategy is to use theorem 4.12, which gives us G(0,0) as a linear combination of
Weierstrafl functions (the individual terms are transcendental functions) and rearrange
them in such a way that we have a linear combination of algebraic hypergeometric series.

Sketch of the proof: More precisely, we have

1 1 12
G(0,0) = 5 <2F1 (—2,—6; 3;16t2) — 1> .

Or, in view of theorem 4.12, Gessel’s conjecture is equivalent to
Fi —3F5 +2F3+3F, —5F; +2Fs =G —1 (4.24)

where G =9 F} (—%,—%;%;167&2) and Fj, = Cl,g(%) for 1 < k < 6. Define V =

F; + Fj — Fj.. Then the left hand side of (4.24) becomes 4‘/174,5 — V2,476 — V1,5,6 — 2V1,273.
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To prove (4.24) we are going to prove the identities

2G+H K 2G+ H
Vigs= oot — o (A25)  Vaag= oo K (426)
J+1 2G+2H—-J—-2K +1
Vige=—5— (427)  Vigz= 1 (4.28)

where G is defined as above. The functions H,J and K are auxiliary functions defined

as H = oFy(—3, %;3;16t%), J := (G — K)? andK—tG’—4t22F1(2,6,§,16t2) Gessel’s

conjecture then follows from (4.25)-(4.28). Summation of these four equations gives us
AVias —Vaue —Vige —2Vig3 =G — 1.

It remains to show the equations (4.25)-(4.28). To show this we show that their valuations

(4z+1)3
ometric series of Schwarz type (3, 3 3) The series G, H, J, K belong to this class. Using
a corollary of the Frobenius-Stickelberger-Identity, which states that if a+ 8+ = 0 then

(C(@)+¢(B)+<¢())? = p(a)+9(B) +p(7), gives us that V; jx = /T; + Tj + Ty if k =i+
3\ 1/2
and Ty = g1, 3(&*’2) Using some properties of p- and (-functions T} <<x(x+1);) ) can be

1/2
at t = (x(xﬂ) 3) are equal. This choice is inspired by the Darboux-covering of hyperge-

(4z+1)

1/2
computed for 1 < k < 6 and thus also Vi 45, V246, Vise, Vigs at t = (ﬁ;ﬁ;g) . Then

s\ 1/2
the equations (4.25)-(4.28) can be verified at T = (ﬁiﬁg;) )

Some preliminary results

Let ¢ and g be the elliptic functions with periods w; and we and (13 and p13 those
with periods w; and 3ws. An elliptic function can be characterized by its periods or
by its invariants. Denote with go and g3 the invariants of . They are such that
¢ (W) = 4p(w)® — gap(w) — g3 for all omega € C. They can be computed explicitly
via the following Lemma.

Lemma 4.17. The invariants go and g3 are given by

4 8
go = g(l —16t% +16t%), g3 = _5(1 —8t3)(1 — 16t% + 8t*)  (4.29).

(without proof)

The invariants g;’g and gé’g of 1,3 are defined analogously. To compute them, define I?
to be the unique positive zero of
g2
X* —2g2X? + 893 — 32 =0 (4.30).
With equations (*33) and (*34) we have that R(t) = 2 + 16t 4 48t* + O(t6) locally at
zero. The following lemmas will give us g;’g and g%’?’ as well as Ty = p1, 3(4 =) in terms of
R.
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Lemma 4.18. We have that

R g2 10R?
Ty = Pl,3(w2) = E’ 95’3 = —5 T?’ 99

(without proof)
Lemma 4.19. The following results hold:

o Ty = p13(“¢) is the unique solution of

1,3

_ 35R3
729

Tg2R 93
243 27"

R 1+ 4t R(1+4t?) R?> g
x5 X+ o)X
(3 T3 ) * ( 9 BT
23R?  R*(1—4t> g3 19Rgo
— = =0 (4.31).
+ (2916 108 27 972 ) (4.31)

with Ty (t) = %

2 ; R+1-8t2 T,
[ ngpl,g(%) 18 T2: +6 —?6.

+ % — 4t — 56t5 + O(t®) near zero.

o T3 = pl,g(%) is another solution of (4.31) such that T3(t) = % - % — 8t* — 60t° +

O(t%) near zero.

o T5 = pl,g(%) is another solution of (4.31) such that T3(t) =

O(t%) near zero.

— B gyt 646 +

Wl

6wo

R+1-8t—+/3R2—4R(1+812)+4(1—812)2—6g;

o T = p13(75) is Tg = 5
(without proof)

3\ 1/2
Next we need explicit expressions for Ty evaluated at t = (”@Eiﬁ;?,) to continue with

the proof of Gessel’s conjecture.

Lemma 4.20. The following equations hold

2e(x +1)(22 4+ 1)

(4z +1)5/2 7

4t +282% +302° + 10z + 1 2z(x+1)(22 + 1)

)

(4 + 1)5/2

EICEDY Y\ a4 2803 4 3002 + 10 4 1
"W\ Az +1)3 B 34z +1)3
D Y\ 4wt 41603 4+ 1202 + 4z + 1
\\ @z +1)3 B 3(4x +1)3 ’
T (x4 1)3 1/2 Cdat 442’ + 4z + 1
S\ (2 +1)3 T 3w +1)3
T z(z+1)3 1/2 (22 — 20— 1)?
N\ (2 +1)3 T 3z 1)
T z(z +1)3 1/2
"\\dz+1)? 3(4x +1)3
2z +1)3\ 2 8zt + 83 —dx — 1
Ts 3 - 3
(4x +1) 3(4z + 1)
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Proof. These equations are consequences of lemma 4.19. Starting with R we replace ¢

1/2
by p(x) = <x(x+1)3) in equation (4.30). Then we factor the result and identify the

(4z+1)3
corresponding minimal polynomial of R(¢(x)) in Q(x)[T]. To do so, we use the local
expansion of R(p(z)) near zero, which is R(p(x)) = 2 — 162 + O(2?). The minimal
polynomial has degree one, which proves

2(22% — 22 — 1)?
(4x —1)3

R(p(z)) =

Using that Ty = % we get the expression for Ty(¢(z)). Replacing ¢t by ¢(z) in lemma 4.19
gives us the expression for Tg(p(z)) and similarly an expression for Ta(p(z)) is obtained.
An annihilating polynomial for T7(p(x)), T5(¢(z)) and T5(¢(z)) can be found using lemma
4.19. This polynomial in Q(z)[T] is product of a quadratic and a linear factor. Using
the local expansions % + 3z — 1222 + 8023 + O(2%), 1 — 32 + 162% + 8423 + O(2*) and
1 — 82— 1627 + 882% + O(2?) the above formulas can be deduced. O

From the definitions of V; ; ;. and the previous lemmas follows

Corollary 4.21. The algebraic functions Vi a5, V246, Vise and Vi 23 satisfy

Vias(e@) =~ Veaslele) = iy
o L eneeey
Vise(p(x)) = iz 11 Viza(p(2)) = 4y + 1 (4a + a)3/2

To finish the proof of Gessel’s conjecture we need to show equations (4.25)-(4.28) (where
Vi jr were expressed in terms of G, H, K and J). The starting point is that the functions
G =2 Fl(—%, —%; —%; 16t2) and H = Fl(—%, %; %; 16t2) are algebraic and fulfill the equa-
tions from the following lemma.

Lemma 4.22. We have that

4o 4 8z + 1 422 4 22 + 1
G(p(x)) = W’ H(p(z)) = W7
K(e(o) = . Tele) = g

(without proof)

With corollary 4.21 and lemma 4.22 we can prove equations (4.25)-(4.28) evaluated at
z = p(x). For example we have that equation (4.25) evaluated at t = p(z) is

20 +4x+1 242?48z +1  14a?+22+41

L1 1 dz(z+1)
(4z4+1)3/2 3 (4z+1)3/2 3 (4o +1)3/2 2 (4x+1)3/2

The proof of the formula for the Gessel excursions is now complete, i.e. G(0,0,t) is
algebraic. Next we will see that G(x,y,t) is algebraic as well.
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Proof of (B)

First we will show that G(0,y) is algebraic in y. To do so we will need some properties
about elliptic functions, the can be found for example in [1].

Property 1: For @,...,0, € C fixed we have that f(w) := ¢+ 3 e, TeC(w — ©0)
is elliptic if and only if Y°7_, = 0.

The sum of the residues in theorem 4.13 is zero, hence ry(w) is by the above property
an algebraic function of g1 3(w). According to the following property we have that pj 3
is algebraic in p(w) and according to (4.9) and (4.10) we have that p(w) is algebraic in y(w).

Property 2: Let p € Z™. Then the Weierstra$ elliptic function with periods @, % can be

written as /i i
o(w) + Z p(er;) p(}(j) Yw € C.

1<0<p—1

Analogously we get that Q(x,0) is algebraic. With the help of the functional equation
follows that G(x,y,t) is algebraic in  and y. Now it only remains to show that it is
algebraic in t as well.

Proof that G(z,y,t) is algebraic in z,y and ¢

First we will show that G(0,y,t) is algebraic as an function in y and ¢. To do so, consider
the representation of r, from theorem 4.13 and apply property 3 to get

01,3 (w - sz) = p13(w) — P13 <kw2) + 191a(0) & Phals)
7 8 ’ T\ 8 2 p13(w) + p1,3(52)

Property 3: For all w,w € C we have that

((wt@) =((w) + (@) + 5

2
ol 0) = —p(w) — p(@) (M)
(

Consider the weighted sum of the eight above identities (for the eight ”"good” values for
k) and obtain
ry(w) = U1(w) + Uz (w) + Us(w)

where Uj(w) is the weighted sum of the eight functions (;3(w), Uz is the sum of the
constants ¢ and the weighted sum of the functions (3 3( <) and Us is the weighted sum of

01 3(w) + @) 3(kw2)
p13(w) + p13(52)

Since the sum of the residues in theorem 4.13 is zero, the coefficient of ¢; 3(0) is zero and
hence U;(w) = 0. That Us is algebraic follows from a similar proof with regrouping and
using the Frobenius-Stickelberger-Equation and the addition theorems for (-functions.

It remains to show that there is a nonzero polynomial P such that P(Us(w),y(w)) = 0,
i.e. Us(w) is algebraic. To achieve this we show that each term of 4.32 satisfies the above
equation (with a different polynomial).

(4.32).
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Lemma 4.23. For k € 7 arbitrary and { € ZF arbitrary we have that o) (%) and
p% (%) are algebraic functions of t or infinite. (without proof)

Lemma 4.23 then implies that pl,g(k—‘g?) and p’lS(k—‘gQ) are algebraic in t. Property 2
gives us that ; 3(w) is algebraic in y(w) over the field of algebraic functions in t. The
same holds for ¢} 3(w) (this follows from the above fact and the differential equation for
Weierstraifunctions). Analogously we get that G(z,0) is algebraic. With the functional
equation for G we can finally deduce that G(z,y,t) is algebraic in x,y and t.

4.3 Bousquet-Mélou’s proof

In March 2015, Bousquet-Mélou came up with a third proof for Gessel’s Conjecture (see
BM-ele). This proof is constructive and the tools used there can also be generalized to
other models. It relies on a generalization of the kernel method and remains on the level
of formal power series and polynomial equations.

Theorem 4.24. The generating function Q(x,y,t) of the Gessel walks in the quarter
plane is algebraic over Q(x,y,t) and of degree 72. The specialization Q(0,0,t) has degree
8. It can be written as
327334+ 3Z — 372 + 23)

(14 2)(Z3+3)3

Q(07 07 t) =

where Z = /T and T is the unique power series in t with constant term 1 that satisfies

3

T
T=1+256t>—— .
+ (T +3)3

The series Q(xt,0,t) is an even series in t with coefficients in Q[x]. It is cubic in t and
can be written as
16T(U+UT —2T)M(U, Z)

Q0.8 = =T £3)°(U + 2)U% — 9T + 8TU + T2 —TT7)

where

MU, Z) =(T — 1)?U? + Z(T —1)(T — 16Z — 1)U?
~TU(T? +16ZT — 82T — 16Z + 17) — ZT(T? — 18T + 1287 + 81)
and U is the unique power series in t with constant term 1 (and coefficients in Q[z]) that

satisfies
1672(U? = T) = x(U + UT — 2T)(U? — 9t + 8TU + T2 — TU?).

The series Q(0,y,t) is cubic over Q(Z,y) and can be written as

16VZ(3+V +T—VT)N(V, Z)

QO = G T 3pa+ VR + Z+V - V)P

where
NV, Z) = (Z-1)XT+3)V3+(T—-1)(T+2Z-7)\V2+(T-1)(T—-2Z —-7)V+(Z+1)*(T+3)
and V is the only series in t with constant term zero that satisfies

1-T+3V+VT =yV2@B+V +T -VT).
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Via step-by-step construction of the walk we obtain

wyK(z,y)Q(x,y) = vy — H(Q(z,0) — Q(0,0)) — (1 +y)Q(0,y) (4.33)

where

K(z,y) =1—-tT+ 7y +z + 2y)
is the kernel of the walk. As we already saw in section 3.2, K remains invariant under
®(x,y) = (77, y) and ¥(z,y) = (z,Z7%y). These transformations generate a group of order

8.
Viewed as a Polynomial in y, the kernel K(z,y) has two zeros

Cl—tla+T— /(1 —t(x+2)? — 42
N 2tx

Yo(x) =Tt + O(t?)

and

Cl—ta+T4+ /A -tz +2)2 42
N 2tx N

Yo(x)

| 8l

+ (1 +7%) — 3t + O(t?).
The expressions zY;(x) are symmetric in = and 7, i.e.

We also have that the elementary symmetric functions Yp+Y; = —1— % —72 and YY) = 72
are polynomials in Z. This property will play an important role in the proof. In the fol-
lowing lemma we will see how to extract the constant term from a symmetric polynomial.

Lemma 4.25. Let P(u,v) a symmetric polynomial in u and v. Then P(Yy, Y1) is a
polynomial in T with constant term P(0,—1).

Proof. Since every symmetrical polynomial in u and v is a polynomial in u+v and uv and
since Yy + Y1 and Y(Y; are both polynomials in T the first statement follows. It suffices
to check the second statement only for polynomials of the form P(u,v) = u™v™ + u"v™
because of linearity. If min(m,n) > 0 then P(Yp, Y1) has a factor 2 and hence its constant
term is zero. Otherwise P(u,v) = u” +v" and then can be shown by induction on n that
the constant term is 2 if n = 0 and (—1)" for n > 0, which proves the claim. O

Consider the orbit of (z,Y)) under the action of the group G:
,2?Y) &

(x, Y1) & (z,Yp).

(z,Yy) & (a11,Yo) & (a1, 22Y) & (7
(7,22Y1) & (2Yp, 22Y1) & (2o, V1) &

According to the construction each of these pairs (2’,y') annihilates the kernel K (x,y). If
the series Q(z',y’) is well-defined we can deduce from (4.33) that

R(z") +S(y') = 2"y

where
R(z) = t(Q(z,0) — Q(0,0)) and S(y) =t(1+y)Q(0,y).

Since Yp is a power series in t we can substitute (x,Yp) and (%, 22Yp) for (x,7) in Q(z,y).
Because Y] is symmetric in  and T, we can obtain these pairs from another by replacing
x by Z. For the Gessel step set, each monom z'y’t" in Q(x, y, t) satisfies n+i—j > . Since
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Yy = O(t) and Y1 = ©(1) this implies that (2Yp,Y7) and (2Yp,2?Y7) can be substituted
for (z,y) in Q(z,y). Hence we obtain four equations

R(z) + S(Yy) = zYp (4.34)
R(zYy) +S(V1) =7 (4.35)
R(T) 4 S(2%Yy) = 2Y) (4.36)
R(xYy) 4 S(2%Y)) = 2 (4.37)

From this equations we want to obtain an equation that relates R(x) and R(%). We add
the first two equations and subtract the last two. From this we obtain

R(z) — S(z*Yy) — S(2°Y1) + = = R(T — S(Yy) — S(Y1) + Z.

Lemma 4.25 tells us that the right hand side is a series in ¢ with coefficients in Q[z]. The
left hand side is obtained by replacing x by T. Hence both sides are independent of x and
thus equal a constant term which equals S(0) + S(—1) according to Lemma 4.25. Since
S(y) is a multiple of (1+y) , this constant is S(0). Hence we obtain a new set of equations

S(Yy) + S(Y1) = R(T) +7 + S(0).
Combining this with (4.34) and (4.36) we get
S(Y1) — Yy = R(x) + R(T + 27 + S(0). (4.38)

For the second symmetric function of Yy and Y; we get by multiplying (4.34) and (4.38)
that

(S(Y0) — 2¥0)(S(V1) — 2Y1) = —R(z)(R(z) + R(T) + 2T — % +2 4 5(0)).

Extracting the nonnegative part in = gives us the nonnegative part of R(x)R(Z):

1+ (2 — %)5(0) = —R(2?) - [+Z]R(2)R(T) — (27 — % + a4 S(0)R(2).

Extracting the constant term in x gives us

1- 2% = _2YR(z)R(z) — 2R'(0).

Since R(z)R(%) is symmetric in x and Z it can be reconstructed from [zZ]R(x) R(T)
R(z)R(7) = [z7]R(x)R(T) + [z=|R(z) R(T) + [+"] R(x) R(T)
— _R(?) - (27— % + o+ S(0)R(z) — R(@)?
(20— % Tt 4+7 4+ SO)RE) - 1— T+ 73— %5(0) +2R(0)).
This can be rewritten as
R(z)? + R@)R(E) + RE + (27 — - + 2+ SO)R(@) + (22 — 5 + T + SO)R()

=2R'(0) — (T+ = — %)5(0) —1. (4.39)
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Next, we want to deduce an equation for R(x) only. But we can’t extract the positive part
from the above equation explicitly (because of the "hybrid term” R(x)R(Z)). Multiply
(4.34) with R(x) — R(T + T + x to separate series in  from series in Z and obtain

P(z) = P(T) (4.40)

where

P(z) =R(z)* + (S(0) + 3% — 1/t)R(2)? + (22% — T/t + x/t — 2> — 2R'(0) + (2% — 1/£)S(0)) R()
—228(0) + z(2R'(0) + S(0)/t — 1). (4.41)

Since R(x) is a multiple of x, each term in the expansion of P has an z-exponent of at
least —1. But (4.40) implies that P(x) is an symmetric Laurent-polynomial in = of degree
1 and valuation —1. Hence

By expanding (4.41) in x at 0 we obtain
P(z) =2(z +7)R'(0) + R'(0)(25(0) — 1/t) + R"(0).
Returning to (4.41) we get

R(z)* + (5(0) + 3% — 1/t)R(x)* + (28" — T/t + x/t — 2* — 2R'(0) + (22 — 1)5(0) /t) R(x)
= R"(0) + R'(0)(25(0) + 27 — 1/t) + 2S(0)(z — T) + =. (4.42)
Hence R(z) fulfills a cubic equation over Q(¢,z, S(0), R'(0), R"(0)):
P(R(z), S(0),R'(0), R"(0),t,2) = 0,
where
P(xg, 21, %2, 23, t, 1) =23 + (v1 + 3T — 1/t) + (28° — T/t + x/t — 2% — 229 + (27 — 1/t)x1) w0
— XT3 — .IQ(Q(El + 27 — 1/t) — .75.751(:8 — 1/t) — . (4.43)

Hence, if S(0), R'(0) and R"(0) are algebraic over Q(t) then R(x) is algebraic over Q(x,t).

The generalized quadratic method

We consider an equation of the form
P(R(x),A1,...,Ap,t,z) =0 (4.44)

where P(xg, 1, ...,%n,t,x) is a polynomial with rational coefficients, R(z) = R(x,t) is a
formal power series with coefficients in Q[z] and A, ... A, are auxiliary series depending
only on ¢. The idea is to find a power series X (t) = X which fulfills

opP
—(R(z), Ay,...,Ap,t,X) =0. (4.45)

8$0

Differentiating (4.44) with respect to x gives us that each such series fulfills

opP

So(R(@), v An t, X) = 0. (4.46)
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With the help of equations (4.44) and (4.45) we obtain relations relating the k+2 unknown
series R(X), Ay,..., A, and X. If we are able to find k different series X7, ..., X} that ful-
fill (4.45), we obtain 3k equations in the 3k unknowns R(X1),..., R(Xk), A1,..., Ak, X1,. ..
If there is no redundancy among them we are able to solve the system and obtain that
each of these 3k series is algebraic over Q(¢).

Now we want to apply this strategy to our problem (4.42). Here we have A; = S(0), A2 =
R'(0) and A3 = R"(0). Equation (4.45) becomes
3 1 2 1

ROO?+2 (50045 - 1) RO+ 55 -

_ tiX + % - X% -2R(0) - <)2( — 1) S(0)=0. (4.47)

The series R(z) and S(0) are multiples of t. Multiply above equation with tX? and obtain
X (1= X)(1+X) =tP(Q(X,0), K'(0),Q(0,0),t, 2).

Hence there are exactly three series in t, called Xy, X7 and X, that annihilate (4.47).
Their constant terms are 0,1 and —1. We obtain

ta? (ap - anp> =(1—2)(1+2)(2tx® + 2t — ) (zox + z12 +1).  (4.48)

Oxg ox

Since the series X; cancel both partial derivatives of P, it follows that X; =1, Xo = —1
and X is the only power series in ¢ which annihilates 2¢X 4 2t — X.The fourth factor on
the right hand side ca not vanish for zo = R(z) and z; = S(z) (because of the factor ¢ in
these series).
Let D(z) be the discriminant of P(zg,S(0), R'(0), R"(0),t,z) with respect to zo. We
have that D(X;) = 0 for « = 0,1,2. Thus we obtain three polynomial equations for
S(0), R'(0), R"(0),t and Xy. Furthermore, D(z) is symmetric in  and Z and is thus a
polynomial in s = z+2Z. We can alternatively say that this polynomial vanishes at s = 42
and s = 2% Elimination in the system of the three equations obtained via D gives us
algebraic equations for S(0), R'(0) and R”(0). They are of degree 8,4 and 8 respectively.
With them we can derive an algebraic equation for R(x) and using the functional equation
for the recurrence we also obtain an algebraic equation for Q(z,y).

Rational parametrizations

To avoid using large polynomials we are going to use rational parametrizations. The
equation fulfilled by R'(0) is

729t°R'(0)* 4 243t* (41> + 1) R’ (0)3 — 27¢2(14t* + 19t — 1) R'(0)?
— (20t — 1)(7t% — 6t + 1)(7t? + 6t + 1)R'(0) — t3(343t> — 37t +1) = 0.

It has genus zero and can be parametrized if we find a power series 7' = T'(t) with constant
term 1 that fulfils 5

T=1+256t2—— .
* (T +3)3

Then we have that
(T —1)(21 — 6T + T?)

7(0) = (T +3)3
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The equation fulfilled by S(0) is

27t75(0)® + 108t°5(0)7 4 189t55(0)® + 189°45(0)® — 9¢3(32t* + 28t% — 13)S(0)*
— 9t2(64t* + 56t% — 5)5(0)® — 2¢(256t° — 312t + 156t — 5)5(0)?
— (327 — 1)(4t% — 6t + 1)(4t> + 6t 4+ 1)5(0) — (25615 + 576t* — 48> +1) = 0.

Because S(0) = tQ(0,0) we obtain an equation for Q(0,0) that only contains even powers
of t. If we replace t? by its rational expression in 7', the equation of degree 8 in Q(0,0)
factors in a term of degree 6 and in a quadratic term. If we insert the first few coefficients
of Q(0,0) we see that the quadratic term vanishes. Hence Q(0,0) has degree 2 over Q(T))
and can be written as Z = /T like in theorem 4.24:

3273(3+3Z — 322 + Z3)

Q0.0 ==z 3p

The power series R”(0) also has a rational expression in Z:

Z3Z -1)(1+2Z+72% - 2 —272° + Z5)
(1+29(3 + Z2)6 '

R"(0) = 2t[z?)Q(x,0) = 1024t

Return to equation (4.42) which is satisfied by R(z) = t(Q(z,0) — Q(0,0)). If we inject in
it the above expressions for S(0) = tQ(0,0), R'(0) and R”(0) we obtain a cubic equation
for Q(z,0) over Q(t, Z,x). Instead of Q(x,0) consider now Q(zt,0) since it is an even

series in ¢. Using
3

T
T =1+ 256t ———
(T +3)3
to express 2 in terms of T = 2% we see that this power series is cubic over Q(Z, z).
We now can construct a equation for Q(0,y) via the kernel equation(4.34). For zt instead
of x this equation is

2t(Q(xt,0) — Q(0,0)) + (1 +y)Q(0,y) = zyt

with y = Yy(«t). Hence the equation for Q(xt,0) gives us a cubic equation for Q(0,y).
Eliminating = between this equation and K (xt,0) = 0 gives us a cubic equation for Q(0, y)
over Q(Z,y).

Instead of giving explicit equations for Q(zt,0) and Q(0,y) they can be parametrized since
they have genus zero. The parametrization is obtained via computing the parametrization
for a few values of Z and reconstructing the parametrization from them. This way the
parametrization of theorem 4.24 is obtained.

The generalized quadratic method also works for proving the algebraicity for some other

step sets. It also turned out to be useful for proving the algebraicity of walks with multiple
steps. Such walks arise after the projection of a 3D walk in the first octant.

o8



5 Tables

The tables below list the 79 non-equivalent non-trivial walks in the quarter plane ordered
by the cardinality of their group. Any models not in the table either differ from one of
the models below by an x/y-symmetry or have an algebraic generating function.

The following 16 walks have a group isomorphic to Dz of order 4. They all have a D-
finite generating function

’ step set ‘ G(9) properties of the GF
PN (z,y), (Z,y), (Z,9), (z,7) D-finite, not algebraic
> < D-finite, not algebraic
> < D-finite, not algebraic
% é D-finite, not algebraic
’\{‘ (z,y), (T,y), (T, %), (z, %) D-finite, not algebraic
@ig D-finite, not algebraic
N4 (z,y), (Z,y), (T, IJEJFE), (z, wJEJrf) D-finite, not algebraic
& 4 D-finite, not algebraic
>T<: (.f, y)7 (Ev y)(f7 y%)? (x7y;p_a|ﬂ_—fi§) D'ﬁnitea not algebraic
;T% D-finite, not algebraic
A (z,y),(@,y), (@, Yz +1+7)),(x,y(zr +1+7)) | D-finite, not algebraic
oo D-finite, not algebraic
[ EDED G ), G ) D-fiute, not algebraic
%ié D-finite, not algebraic
/T\ (z,v), (@, y), (@ y(z+7)), (z,y(x + T)) D-finite, not algebraic
YT i D-finite, not algebraic

The following five walks have a group isomorphic to D3 (order 6). All of them have a
D-finite generating function. The last three even have an algebraic generating function.

’ step set ‘ G(9) ‘ properties of the GF ‘
<_T\J (z,9), (y,y), @y, T), (¥, %), (y,yz), (x,yz) | D-finite, not algebraic

D-finite, not algebraic

Ik

<_T\ (z,9), (xy,y), (Y, x), (y, 2), (y,7Y), (x, TY) | algebraic

algebraic

algebraic
4
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There are two walks with group isomorphic to D4 (order 8). They both have a D-finite
generating function. One of them has even an algebraic generating function.

’ step set ‘ G(9) ‘ properties of the GF ‘
$§ (‘T’ y)? (yja y)v (yfv yEQ)a (Ea yf2)’ D—ﬁnite, not algebraic
(7.9), (27,9), (27, 2°7), (x,§2*)
(z,9), (T, y), (Y, 2%y), (T,2%y), | algebraic
7 S - =2 —
(.9), (zy, ), (zy, T°Y), (z,y77)

The following 56 step sets, ordered by their cardinality, are associated with a infinite
group. Their generating function is not D-finite.

Step sets of cardinality 3:
X
Step sets of cardinality 4:

/I% /Ti /M “I/ /T< Jﬁ “I\ YT\ >Tx N\ % Kf \{ Yf >¢/ %/ \ﬁ

Step sets of cardinality 5:

P50 N8 Rob BTN KA K A DN
%T\ AR F \&4 >Ti %f $¢<

Step sets of cardinality 6:

KRR RAN A KKK

Step sets of cardinality 7:

R
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6 Other techniques

In this section we are going to see a few techniques my thesis advisor and I discussed that
might turn out to be useful for proving algebraicity or D-finiteness results.

6.1 Division of formal power series

Remember that in chapter 2.2 we wrote the functional equation for the generating function
as

K(x) = Q(x)Fs(x) + U(x)

where Q(x) was the kernel of the recurrence, Fs = Y .. na faX™ was the ”interesting”
part of the generating function and K (x) and U(x) were the known respectively unknown
initial function. This equation can be interpreted as Euclidean division with remainder:
the series K(x) is divided by the polynomial Q(x) with quotient Fy(x) and remainder
U(x). The advantage of this interpretation is that there are some results on the division
of power series, the so called division theorems.

Since in our setting we have more than one variable we need to fix an monomial order.
We will take the weight vector w from theorem 2.3, such that xP, where p is the apex
of the recurrence, is the inital monom of (). We had that w -t < 0 for all t € H which
implies xP <y xP~t for all t € H. Hence xP is <y-minimal in supp(Q). We know that
U(x) € K[[x]]ZP, which matches exactly the condition imposed on the remainder in Eu-
clidean division.

Example: The division of a power series P(x) by a monom x®, n € N? is equivalent
to the direct sum decomposition

K[[x]] = x"K{[[x]] & [[x]}*"

where the identity is considered as an identity of vector spaces. We obtain that P(x) =
x"F(x) + R(x) where the remainder R(x) has to fulfill the condition supp(R) C K[[x]]Z".
We have that K[[x]]%" = K][[x]]/(x™) (again as vector spaces).

We can generalize this concept to power series A(x) € K[[x]] with initial monom x™
with respect to a fixed monomial order <y,. We obtain that

K[[x]] = A)KI[[x]] & K[[x]]2".

Consider the mapping u : K[[x]] x K[[x]]Z® — K][[x]] given by (B,C) + AB + C. This is
an K-linear isomorphism. We can split it in u = v 4+ w such that v(B,C) = x"B + C and
w(B,C) = (A —x")B. Note that w does not depend on C. The mapping v is a K-linear
isomorphism because C' lies in K[[x]]Z". Hence u is an isomorphism if and only if the ge-
ometric series Y o (—v~tw)* converges, i.e. if the limit > 3% ,(—v~1w)¥ (B, C) exists as
formal power series. This limit exists because the order of the summands tends to infinity.
Let (Bgi1,Cra1) = (—v~tw)(By, Ck) with Byyq # 0. Then the initial monom of By, is
strictly bigger (with respect to <y ) than the initial monom of Bj. The initial monoms of
Ck, Cgi1, ... grow, too. In our case, where the division is obtained from a recurrence, we
are not necessarily interested in carrying out the division explicitly. We are much rather
interested in the properties of the generating function.
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Definition 6.1. Suppose K is a complete valued field (for example K = R,C 0rQ,). A
power series A € K[[a]] is called convergent if it defines a analytic function near (0,...,0).
The ring of all convergent power series is denoted by K{x}.

The Weierstrafl Division Theorem and its generalization by Grauert, Hironaka and Galligo
to ideals of convergent power series gives a sufficient condition for F5(x) to be convergent.
We will only consider the case of division by one power series.

Theorem 6.2. Let K be a complete valued field and A(x) € K{x} a convergent power
series. Let x™ be the initial monom of A(x) with respect to some fized monomial ordering
on N%. Then

K{x} = A(x)K{x} & K{x}%".

Proof. For a power series F' € K[[x]] and a positive real number r > 0 we define |F'(x)|, =
— > e | falr1®l. We have that F(x) € K{x} if and only if there exists an r such that
|F'(x)| < oo. The space of all power series K{x}, with |F(x)|, < oo is a Banach space.
Consider as before the map u = v 4+ w : K{x} x K{x}Z® — K{x} For sufficiently small
r this mapping can be restricted to K{x}, x K{x}#" and K{x},. The convergence of
the geometric series ZZO:O(—U_Iw)k follows, if we show that the restriction of v~ 'w has
operator norm less than 1 for sufficiently small . This follows from the fact that the
initial monom of a series is the highest among the monoms in its expansion. Thus Fy(x)
is convergent if the initial conditions K(x) € K[[x]] are a convergent series. O

Theorem 6.3. (Lafon-Hironaka division theorem) Let A(x) € K[[x]]%9, where K[[x]]%9 C
K[[x]] is the subalgebra of algebraic power series, and x™ the initial monom of A(x) with
respect to some monomial order where n = (0,...,0,n%,0...,0). Then

K[[x]]*¥ = A(x)KI[x]]" & (K[[x]“)E".
(without proof)

Note that the condition on n can not be dropped. For example, dividing zy by zy — 2% —
y3 + 2%y? with initial monom zy gives a transcendent remainder.
The theorem implies that if Fs(x) and U(x) are algebraic in the division if K(x) is al-
gebraic and the initial monom of Q(x) has only one variable, i.e. the apex has only one
positive component. We already saw this in theorem 2.12 before.

Let’s see what happens if we apply the concept of polynomial division to Gessel walks.
The recurrence is

and the characteristic polynomial is
Q(z,y,t) = xy — (yt — 2%yt +t + 2°yt) = zy — t(1 + y) (1 + 2%y).

Since the apex is (1,1,0) we can not apply the theorem directly. But we can rewrite the
recurrence as

f(z,],n):f(z—l,]—1,n+1)—f(z,]—1,n)—f(z—2,j—1,n)—f(l—2,j—2,n)
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Now the apex is (0,0, 1) and the characteristic polynomial has changed its sign. We can
take (2,2,0) as starting point of this recurrence and w = (1,1, 1) as weight vector since it
fulfills w - h < 0 for all shifts h. Calculation gives us that

Fy(z,y,t) = t* + 3zt3 + 12t* + zyt + 3yt* 4 . ..
K(z,y,t) = t3 — xyt? + yt> + 3xt? — 222yt3 — 8wyt? — 209t + ...
U(z,y,t) =0.

If we are able to show that K (z,y,t) is algebraic, then Fg(x) is also algebraic and the full
generating function F(x) of Gessel walks is algebraic as well.

6.2 Diagonals

Another idea that might be useful for proving algebraicity results is using results about
diagonals of power series. There are many known facts about diagonals, for example it
is known that any diagonal of a D-finite power series is D-finite again. The idea is now
to find an antidiagonalization of our power series and then use these results. This idea
is motivated by a concept from algebraic geometry and resolutions of singularities, the
so called blow-up. For the sake of completeness I will mention the definition and a few
results about blow-ups although it is not necessarily needed to understand the section
about diagonals.

Definition 6.4. Let Z C M = R" be a submanifold, a € M \ Z a point and o : M — Z
be a local retraction (i.e. o is differentiable and ¢* = o). Denote by g, the line through
a and o(a), considered as a point in the projectivized normal bundle P(N (M, Z)). We
obtain a differentiable mapping 0 : M\ Z — P(N(M,Z),a) — g, with graph T' C (M \
ZYXxP(N(M,Z)). LetT be its closure and 7 : T — M, (a,£) — a the canonical projection.
Then T together with m is the blow-up of M with center Z.

Remark: In most cases, the center of the blow-up is Z = {0}. Then we have that
N(M,Z) = Upez TaM|TrZ = TyM = ToR"™ = R", where T, M is the tangential space to
M in the point a. Hence P(N (M, Z)) = P"~}(R).

Theorem 6.5. (a) Let Z = {0} C M = R" with blow-up M C R™ x P*1(R). Then M is
determined in local coordinates ((x —1,...,xy,), (u1 : -+ - : uyp)) via the equations
Tiuj — riu; =0
for alli # j and
T M—)M,((:pl,...,xn),(ul Do iUy)) e (T, Tn).

(b) Let Z = 0 and let the canonical affine coordinates on P"~1(R) given by the open subsets
Uj = {u e P Y(R),u; # 0} 2 R""L. Then the j-th chart expression of 7 is given by

. PN n
T - R" - R ,($1,...,l’n) — (.’E1$j,.. 5 Tj—1T5, Ty Tj41TLg5 - - - ,$an).

(without proof)
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Example: Let X = V(2® —y?) and Z = 0. This algebraic curve has a singularity at
(0,0). Let us consider its blow-up, given by the charts

m(V(a® —y?) = V(a® —a?y?) = V(@) nV(z - )

m(V(e® —y?) = V(a®y® —y?) = V(y*) NV (a®y — 1).

They are a parabola and a hyperbola respectively and thus smooth. The singularity has
vanished in the blow-up. In general, the singularity of a curve not always vanishes after
a blow-up, but its order decreases. Thus there exist a chain of blow-ups resolving the
singularity.

Let us now apply this concept of making things nicer by going to higher dimensions”
to power series and diagonals.

Definition 6.6. Let K be a field of characteristic zero and f(X) = > icyn ail,.,,Jnx? ool
a power series. The primitive diagonal I o of the power series f is defined as

Na(f) =Y iy isin i iy

The other primitive diagonals I;; are defined similar. A general diagonal is any composi-
tion of some I{js and the complete diagonal of f is

Liolos... In_10(f) = Zazzxz
€N
Often the complete diagonal is called diagonal.

We will show that any diagonal of a D-finite function is D-finite. If we are dealing with
a series in 2 variables over the field K = C we even have that the diagonal of a rational
power series f(x,y) is algebraic since we can write

_ 1 ty d¢
PI= o |<|—ef<<’6) ¢

for € and |t| small. This representation can easily be checked by Residue Theorem. But
this argument does not work for n > 3. In general, the diagonal of a rational power series
over a field with characteristic zero need not be algebraic.

But in characteristic p > 0 we have that the diagonal of any rational function is algebraic.
The proof of this can be seen in [17].

Let now charK = 0 and f € K[[z1,...,z,]] be D-finite, i.e. f fulfills a system of lin-
ear partial differential equations of the form

6 ng 8 ni—l
(ami(ff) <8x> + @in;—1() <8x> +-- 4 aio($)> f=0 fori=1,...n

Let s be a new variable and define

1 x
F(s,x1,23,...,Ty) := ff(s,?,xg,...,xn).
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The function F' is not a power series in s, x1, x3, . . ., T, but an element of the K|[s, x1, x3, ..., x,]-
module M of all

_ j 102 .03 i
G = E Qjiy..in S XX 2T
J€ZLyig,...,in€N,j+i2>k

for a k depending on GG. Let D be the ring of all linear partial differential operators in

%, 8%17 8%37 e % with coefficients in K[s, x1,x3,...,2,]. Then M is a D-module. The

coefficient of 2 in F is Iy »(f).

Lemma 6.7. If 0 #p € K[s,z1,3,...,2,] and G € M fulfills pG = 0 then G = 0.

Proof. For k suitable we have that s*G € K[[s, £, z3,...,2,]]. Substitute z; = su where
u is a new variable. From this we obtain that

0= p(s, su,x3,...,20)s*G(s,u, 3, ..., xn) € K[[s,u, x3, ..., 2,]].

The claim follows because multiplication with s and substitution 1 = su are both one to

one. O
Lemma 6.8. F is D-finite (in s,x1,x3,...,%yn).
Proof. This follows from the fact that f is D-finite and the chain rule. O

Hence there exist nonzero linear partial differential operators with polynomial coefficients

0

o™ . 0
Al s, x1,23,...,%n; 2 ) = L(s,x1,23,...,2Tp) + low-order-terms in—
s

Os 0s
and

9
a.’Ei

o\ .0
B; (3,371, T3y .n., Ty, > = Li(s,x1,23,...,2p) < > + low-order-terms in

such that AF =0 and B;F =0fori=1,3,...,n.

Lemma 6.9. There exist nonzero linear partial differential operators Pi(z1,x3, . .., Tn; %, %
3

fori=1,3,...,n with coefficients in K[x1,xs3,...,xy,] and P; contains only derivatives of
¥
the form (%)’8, (%) such that

0o 0
P<m1,l’3,...,ﬂfn,as,axi>F—0

fori=1,3,...,n. (without proof, the proof can be found in [24]).

Theorem 6.10. If f € K|[[x1,...x,]] is D-finite and I is an arbitrary diagonal, then I(f)
is D-finite (without proof, the proof can be found in [24]).

Now we want to apply this result to prove the D-finiteness of generating functions of lattice
walks. The idea is to find an rationalization A of G such that I(A) = G where I is any
diagonal and then prove that A is D-finite. From the theorem above then follows that G
is D-finite as well.

Of course, at first glance it might seem counterintuitive to go to a higher dimension and
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then prove there that something is D-finite. But as we already saw in the motivational
example with the blow-ups, things can get nicer and easier in higher dimension. The
singularity we had in dimension 2 disappeared after the blow-up and going to dimension

3.

Definition 6.11. An antidiagonalization of a power series f € K|[[x1,...,xy,]] is a power
series A € K[[z1,...,Tm]], m > n together with a diagonal I such that I(A) = f.

Note that antidiagonalization of a power series f is not unique. For example, let f(x) =
> iz 2" be the geometric series. Then

€N
is an antidiagonalization of f, because I 2(A1(z,y)) = f(z), but also
Ag(m,y) = D (i—j+Da'y/
i,jeN
is an antidiagonalization of f, since also I1 2(A2(z,y)) = f(x).

Example: Consider the walk with S = {—,1}. Then f(i,j,n) = (7) ifn=1+37
and f(i,7,n) = 0 else. We have that

Fleyn=Y 3 ( ):,;yﬂtn

n>0i+j=n

Now we want to find a power series G with AG = F. This can be achieved by taking for
example A = [15134156 and

a1 +as
G = g E ( )x‘flxg%g%i“xg%g@.
ai

a2,a4,a5,a6 20 a1,a3>0,a1+az=as
The power series G can be rewritten as

1 1 1 1

as ..a2 .04 .05 .06 __
g (x1+$3) Ty Ty Ty Tg _1—(x1+1:3)$51—$21—3541_376

az,a4,a5,a6>0

which clearly is D-finite (and even rational). Thus AG = F is D-finite as well.

Of course, in this rather easy example one could show directly that F' is rational without
using the antidiagonalization and rewriting F' as a geometric series. But in cases where F'
is more complicated this method might actually be helpful.

Diagonals also appear in various other proofs connected with rationality or irrationality,
the most famous example is probably the irrationality of ((3), where the transcendental

series ZZ ( ) (n N k> -~

n=0 k=0

plays an important role (see for example [28]).
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7 Final notes and comments

In the last few years the classification of lattice paths with small steps in the quarter
plane has finally been completed. However, there are many more interesting questions in
lattice path walks, some topics I did not cover in this thesis and there are still a few open
questions in this field. This chapter is some kind of overview on these topics and questions.

First of all, it is natural to consider not only small steps but any kind of steps with integer
coordinates. Some of these cases can be already covered with what we did here: if the apex
of the step set has at most one positive coordinate, the generating function is algebraic. In
[13] a simple example of a walk with a non-D-finite generating function is mentioned: the
knight’s walk.They are walks starting in (1,1) with steps in {(—1,2),(2,—1)} that stay
in the first quadrant. The steps correspond to the knight’s moves on a chessboard. In [4]
there are also some examples of walks with bigger steps. It is still possible to write down
a functional equation for the series Q(x,y,t), but the kernel has now degree larger than 2
in z or y.

Another natural generalization is considering walks in other regions than the quarter
plane. When dealing with walks with integer steps below a rational diagonal we can apply
a rational transform, mapping the diagonal to the vertical axis and are back in the case
of walks with larger integer steps in the quarter planes. But there are also some other
regions of interest. In [21] the authors discuss walks in a horizontal stripe between the
two lines y = 0 and y = C for a constant C' and their interpretation as the gambler’s ruin
problem, where two players gamble against each other until one of them goes bankrupt.
It may also be of interest to keep track not only of the number of steps, but also of the
number of contacts with the diagonal, as seen in [27].

Furthermore, we can also consider generalizations to higher dimensions and study walks
with simple steps in three or n dimensions. In [5] Bostan and Kauers studied three-
dimensional walks in the first octant with at most five steps empircally. They tried to find
some criteria for their generating function to be D-finite, i.e. certain symmetries of the
step set.

Already in the three dimensional case, the large number of different walks causes difficul-
ties. In three dimensions we have 226 different step sets, in n dimensions 23" ~!. Taking
into account that some step sets only differ by a symmetry of the octant or only result in
the empty walks, we are left with 11074225 essentially different step sets. This number is
obtained via a similar inclusion-exclusion argument as in the 2D-case, for details see [3].
In this paper the authors tried to classify walks in 3D with the same techniques as in the
two-dimensional case. Again there can be a group associated with each step set, in the
three-dimensional case this group has three generators. Among walks with not more than
six steps the highest cardinality of a finite group that appeared was 48, the other groups
are conjectured to be infinite and the corresponding generating functions are conjectured
to be not D-finite. In some of the cases with a finite group the kernel method turns out to
be helpful again. Other cases can be tackled with the so called Hadamard decomposition,
where a walk in Z3 is reduced to a pair of walks in Z and Z2. There are 19 cases left,
where the group of the walk is infinite but the nature of the generating function remains
unknown.

The following diagram summarizes what is known about the classification of three dimen-
sional walks with less or equal six steps
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models with < 6 steps (20804)

170 20634
orbit Sujy i l
orbit sum =0
108 62 not D-finite?
kernel methodl Hadamardi wr\nard
D-finite D-finite unknown

There are also some interesting questions within the setting of lattice walks with small
steps in the quarter plane. We often obtained hypergeometric expressions for certain
numbers of walks, for example the number of Gessel walks ending in the origin is

(5/6)n(1/2)n
(5/3)n(2)n

Are there any kind of combinatorical explanations or correspondences for such results?
For some models, there are combinatorical correspondences known, for example, the walks
with step set {W,N,SE} correspond to Young tableaux of height three or the walks with
step set {E, W, NW, SE} stand in bijection with pairs of non-intersecting Dyck-paths.

Another interesting question is if there exists a proper subset A G K[[x]] of the set of all
power series such that all generating functions of lattice path walks lie in A. Clearly, the
set of D-finite functions is included in A. There is the concept of D-D-finite power series,
where the coefficients of the differential equations are not polynomials (as in the D-finite
case), but D-finite series. Of course, this concept can be iterated, but it is unknown with
what set we will end up and if we already gain all kinds of power series with this process.

q(0,0,2n) = 16"
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